Novel Nano-pipette for imaging of deep cortical layers and deep brain structures
用于深层皮质层和深层大脑结构成像的新型纳米移液器
基本信息
- 批准号:7739664
- 负责人:
- 金额:$ 13.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgarAirAlgorithmsBrainBrain imagingCell NucleusCerebral cortexCharacteristicsCodeCollectionDataDevelopmentDevicesDyesElectrodesFiberFluorescenceFunctional ImagingFutureGenerationsGoalsImageImaging TechniquesImaging technologyIn VitroLaboratoriesLightLightingMapsMediatingMetalsModelingMonkeysNanotechnologyNeuronsNeurosciencesOpticsOutcomePatternPopulationPropertyRattusResolutionSemiconductorsSignal TransductionSilicon DioxideStructureSurfaceSystemTechniquesTechnologyTestingTimeVisual CortexVisual Perceptionbarrel cortexbasecognitive functionin vivoinformation processinginsightlenslight scatteringmillisecondnanoneuromechanismnovelnovel strategiesoptical imagingphotonicspublic health relevancesensorvoltage
项目摘要
DESCRIPTION (provided by applicant): Here we propose to develop a multi-functional nano-pipette (NP) for in vivo endoscopic imaging, combined with electrophysiological recording from deep cortical layers or deep brain structures. Using this NP, we plan to study neuronal mechanisms of information processing across cortical layers and from deep brain nuclei. Functional maps in the barrel cortex of rats and visual cortex of behaving monkeys are well established nowadays and can be demonstrated in 2D, using functional imaging techniques such as optical imaging of intrinsic signals (OI-IS), with high spatial resolution, or voltage-sensitive dye imaging (VSDI) with high spatio-temporal resolution. However, imaging functional maps in 3D has not yet been fully achieved due to the inability of modern in vivo imaging techniques to resolve neuronal activity at high spatio-temporal resolution from deep layers of the cerebral cortex. For the same reasons, imaging from deep brain structures using VSDI or OI-IS is not possible currently. Here we propose to address this problem by combining recent developments in the field on nanotechnology and in real time imaging techniques in vivo. Recently, Prof. Zeev Zalevsky and his laboratory have developed the technology that enables generation of fibers similar to photonic crystal fibers (PCF), having internal metal wires. Those fibers are generated by tapering silica pre-forms with desired cross section into which the wires are pre-inserted. This tapering of the pre-form, obtained without losing its internal geometry, produces short, thin nano-pipettes that transmit light and electrical signals to appropriate sensors. Furthermore, the Zalevsky laboratory has developed algorithms to amplify the low resolution inherent in such a system. Using this technology and expertise, in combination with Dr. Hamutal Slovin's imaging expertise, we propose to fabricate a tapered pre-form containing optical and electrical fibers (Specific Aim #1) and test its applicability on small artificial targets in vitro and in vivo (Specific Aim #2). Finally, we will determine whether this device can be used for brain imaging by testing it in vivo on the barrel cortex and deep brain nuclei of anesthetized rats through functional imaging, namely OI-IS and VSDI (Specific Aim #3). If successful, our nano-pipette is expected to revolutionize existing imaging capabilities and will enable new insights into the neural mechanisms underlying visual perception and higher cognitive functions. PUBLIC HEALTH RELEVANCE: We propose to develop a nanopipette (probe), which will be inserted into the cortical surface of the brain and will enable simultaneous imaging and electrophysiological recording from deep cortical layers or deep brain nuclei. If successful, the outcomes of this project will revolutionize existing imaging capabilities and will enable new insights into the neural mechanisms underlying visual perception and higher cognitive functions.
描述(由申请人提供):在这里,我们建议开发一种多功能纳米移液器(NP),用于体内内窥镜成像,结合皮层深层或脑深部结构的电生理记录。利用这个NP,我们计划研究跨皮质层和来自脑深部核的信息处理的神经元机制。目前,大鼠桶状皮层和行为猴视觉皮层的功能图谱已经建立,并且可以利用高空间分辨率的内在信号光学成像(OI-IS)或高时空分辨率的电压敏感染料成像(VSDI)等功能成像技术在二维上进行展示。然而,由于现代体内成像技术无法从大脑皮层深层以高时空分辨率解析神经元活动,因此尚未完全实现3D成像功能图。出于同样的原因,目前还不可能使用VSDI或OI-IS对大脑深部结构进行成像。在这里,我们建议通过结合纳米技术和体内实时成像技术的最新发展来解决这个问题。最近,Zeev Zalevsky教授和他的实验室开发了一种技术,可以产生类似光子晶体光纤(PCF)的光纤,内部有金属线。这些纤维是通过逐渐变细的二氧化硅预成型而产生的,该预成型具有所需的横截面,电线被预先插入其中。在不失去其内部几何形状的情况下,预成型的这种锥形产生了短而薄的纳米移液管,可以将光和电信号传输到适当的传感器。此外,Zalevsky实验室已经开发出算法来放大这种系统固有的低分辨率。利用这项技术和专业知识,结合Hamutal Slovin博士的成像专业知识,我们建议制造一个包含光学和电气纤维的锥形预成型(特定目标#1),并测试其在体外和体内小型人造目标上的适用性(特定目标#2)。最后,我们将通过功能成像,即OI-IS和VSDI,在麻醉大鼠的脑桶皮质和脑深部核上进行活体测试,以确定该装置是否可以用于脑成像(Specific Aim #3)。如果成功,我们的纳米移液器有望彻底改变现有的成像能力,并将为视觉感知和更高认知功能的神经机制提供新的见解。公共卫生相关性:我们建议开发一种纳米吸管(探针),将其插入大脑皮层表面,并将实现皮层深层或脑深部核的同步成像和电生理记录。如果成功,该项目的成果将彻底改变现有的成像能力,并将为视觉感知和高级认知功能的神经机制提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamutal Slovin其他文献
Hamutal Slovin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hamutal Slovin', 18)}}的其他基金
Novel Nano-pipette for imaging of deep cortical layers and deep brain structures
用于深层皮质层和深层大脑结构成像的新型纳米移液器
- 批准号:
7896596 - 财政年份:2009
- 资助金额:
$ 13.61万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 13.61万 - 项目类别:
Research Grant














{{item.name}}会员




