Novel Nano-pipette for imaging of deep cortical layers and deep brain structures

用于深层皮质层和深层大脑结构成像的新型纳米移液器

基本信息

  • 批准号:
    7896596
  • 负责人:
  • 金额:
    $ 13.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Here we propose to develop a multi-functional nano-pipette (NP) for in vivo endoscopic imaging, combined with electrophysiological recording from deep cortical layers or deep brain structures. Using this NP, we plan to study neuronal mechanisms of information processing across cortical layers and from deep brain nuclei. Functional maps in the barrel cortex of rats and visual cortex of behaving monkeys are well established nowadays and can be demonstrated in 2D, using functional imaging techniques such as optical imaging of intrinsic signals (OI-IS), with high spatial resolution, or voltage-sensitive dye imaging (VSDI) with high spatio-temporal resolution. However, imaging functional maps in 3D has not yet been fully achieved due to the inability of modern in vivo imaging techniques to resolve neuronal activity at high spatio-temporal resolution from deep layers of the cerebral cortex. For the same reasons, imaging from deep brain structures using VSDI or OI-IS is not possible currently. Here we propose to address this problem by combining recent developments in the field on nanotechnology and in real time imaging techniques in vivo. Recently, Prof. Zeev Zalevsky and his laboratory have developed the technology that enables generation of fibers similar to photonic crystal fibers (PCF), having internal metal wires. Those fibers are generated by tapering silica pre-forms with desired cross section into which the wires are pre-inserted. This tapering of the pre-form, obtained without losing its internal geometry, produces short, thin nano-pipettes that transmit light and electrical signals to appropriate sensors. Furthermore, the Zalevsky laboratory has developed algorithms to amplify the low resolution inherent in such a system. Using this technology and expertise, in combination with Dr. Hamutal Slovin's imaging expertise, we propose to fabricate a tapered pre-form containing optical and electrical fibers (Specific Aim #1) and test its applicability on small artificial targets in vitro and in vivo (Specific Aim #2). Finally, we will determine whether this device can be used for brain imaging by testing it in vivo on the barrel cortex and deep brain nuclei of anesthetized rats through functional imaging, namely OI-IS and VSDI (Specific Aim #3). If successful, our nano-pipette is expected to revolutionize existing imaging capabilities and will enable new insights into the neural mechanisms underlying visual perception and higher cognitive functions. PUBLIC HEALTH RELEVANCE: We propose to develop a nanopipette (probe), which will be inserted into the cortical surface of the brain and will enable simultaneous imaging and electrophysiological recording from deep cortical layers or deep brain nuclei. If successful, the outcomes of this project will revolutionize existing imaging capabilities and will enable new insights into the neural mechanisms underlying visual perception and higher cognitive functions.
描述(由申请人提供):在此,我们提出开发一种用于体内内窥镜成像的多功能纳米移液管(NP),结合来自深层皮质层或深层脑结构的电生理记录。 使用这个NP,我们计划研究神经元的信息处理机制,跨皮层层和脑深部核。 功能地图在桶皮质的大鼠和视觉皮质的行为猴子现在已经建立,可以证明在2D,使用功能成像技术,如光学成像的内在信号(OI-IS),具有高空间分辨率,或电压敏感染料成像(VSDI)与高时空分辨率。 然而,由于现代体内成像技术无法以高时空分辨率从大脑皮层深层解析神经元活动,因此3D成像功能图尚未完全实现。 出于同样的原因,目前还不可能使用VSDI或OI-IS对深部脑结构进行成像。 在这里,我们建议通过结合纳米技术领域的最新发展和体内真实的成像技术来解决这个问题。 最近,Zeev Zalevsky教授和他的实验室开发了一种技术,可以生成类似于光子晶体光纤(PCF)的光纤,具有内部金属线。 这些纤维是通过使具有所需横截面的二氧化硅预成型件变细而产生的,其中预先插入导线。 这种预成型体的锥形化,在不失去其内部几何形状的情况下获得,产生短而薄的纳米移液管,其将光和电信号传输到适当的传感器。 此外,Zalevsky实验室已经开发出算法来放大这种系统中固有的低分辨率。 利用这种技术和专业知识,结合Hamutal Slovin博士的成像专业知识,我们建议制造一种含有光纤和电纤维的锥形预制件(具体目标#1),并测试其在体外和体内小型人造目标上的适用性(具体目标#2)。 最后,我们将通过功能成像,即OI-IS和VSDI(特定目标#3),在麻醉大鼠的桶皮质和脑深部核团上进行体内测试,以确定该设备是否可用于脑成像。 如果成功的话,我们的纳米移液管有望彻底改变现有的成像能力,并将使人们对视觉感知和高级认知功能的神经机制有新的认识。 公共卫生关系:我们建议开发一种纳米移液管(探针),将其插入大脑皮层表面,并能够从深层皮层或深层脑核同步成像和电生理记录。 如果成功,该项目的成果将彻底改变现有的成像能力,并将使人们对视觉感知和高级认知功能的神经机制有新的认识。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In vivo minimally invasive interstitial multi-functional microendoscopy.
体内微创间质多功能显微内窥镜。
  • DOI:
    10.1038/srep01805
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shahmoon,Asaf;Aharon,Shiran;Kruchik,Oded;Hohmann,Martin;Slovin,Hamutal;Douplik,Alexandre;Zalevsky,Zeev
  • 通讯作者:
    Zalevsky,Zeev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamutal Slovin其他文献

Hamutal Slovin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hamutal Slovin', 18)}}的其他基金

Novel Nano-pipette for imaging of deep cortical layers and deep brain structures
用于深层皮质层和深层大脑结构成像的新型纳米移液器
  • 批准号:
    7739664
  • 财政年份:
    2009
  • 资助金额:
    $ 13.47万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了