Fate specification of corticospinal neurons by cell autonomous signaling
细胞自主信号传导对皮质脊髓神经元的命运规范
基本信息
- 批准号:7652804
- 负责人:
- 金额:$ 36.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmyotrophic Lateral SclerosisBioinformaticsBirthBrainCellsCerebral cortexCessation of lifeColorCorpus CallosumDNADataDecision MakingDevelopmentDiseaseElectroporationEmbryoEventGenerationsGenesGoalsHereditary Spastic ParaplegiaHeterogeneityHumanIndividualInjection of therapeutic agentInjuryInternal CapsuleInvestigationLaboratoriesMicroarray AnalysisMolecularMolecular AnalysisMotor Neuron DiseaseMotor NeuronsMusMutant Strains MiceNatural regenerationNeonatalNerve DegenerationNervous system structureNeurodegenerative DisordersNeuronsParalysedPathway interactionsPhosphotransferasesPlayPontine structurePopulationPrimary Lateral SclerosisProcessPropertyProteinsPublishingReportingRoleSamplingScreening procedureSeriesSignal TransductionSpinal CordSpinal cord injuryStagingTestingTherapeuticTimeTissuesWorkbasebody systemclinically relevantcombinatorialgain of functionin uteroin vivoin vivo Modelinjuredloss of functionmolecular markermotor neuron degenerationmotor neuron developmentmutantnestin proteinneuroblastneuron developmentnovelnovel therapeuticsoverexpressionpostnatalprogenitorpromoterpublic health relevancereceptorresearch studyresponseselective expressiontranscription factor
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to determine the molecular signals that instruct the fate specification and the lineage-specific development of corticospinal motor neurons (CSMN). These neurons are a clinically relevant population that, in humans, selectively dies in neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), Hereditary Spastic Paraplegia (HSP), and Primary Lateral Sclerosis (PLS). They are also the cells permanently injured and responsible for paralysis in spinal cord injury (SCI). In the nervous system, studies aimed at investigating the molecular controls over birth, survival and connectivity of individual neuron types have been notoriously difficult, owing to the astonishing cellular heterogeneity of the tissue, combined with the inability to distinguish and purify one neuron type in isolation from others. In my postdoctoral work, I addressed this issue directly in the cortex, and have identified and begun to functionally characterize the first series of genes that in a combinatorial fashion uniquely identify CSMN as this neuron type develops [1]. Most relevant to the present proposal, we discovered that the transcription factor Fezf2 is a "master gene" that is both necessary for the birth of CSMN (i.e. CSMN are absent from the cortex of Fezf2-/- mice), and is at least in part sufficient to instruct the fate-specification of cortical progenitors to CSMN (i.e. elevated levels of Fezf2 can induce a "fate-switch" in progenitors destined to form upper layer neurons towards forming CSMN and deep layer neurons) [2]. Here, I build on this prior work and on new data from my own laboratory to directly investigate the central questions of this proposal: (1): What are the molecular signals that instruct the fate-specification and early development of cortical progenitors into CSMN? (Aim 1 and Aim 2) (2): Do postmitotic neurons of a different cortical type maintain the ability to generate CSMN in response to Fezf2 or, rather, are neuron lineage-specification decisions made and only modulated at the progenitor stage? (Aim 3) We present prior published work and substantial new data that support the feasibility of these experiments, and the direct relevance of the results to the development of novel therapeutic strategies to replace CSMN in neurodegenerative and traumatic diseases of the corticospinal circuitry.
PUBLIC HEALTH RELEVANCE: Different neurodegenerative diseases of the CNS are typically characterized by the progressive death of specific neuron types. Corticospinal motor neuron (CSMN) degeneration and injury is a key component of motor neuron disease (including ALS), and of spinal cord injury. Here we propose to determine the molecular signals that instruct the birth of this clinically relevant neuron type, and to investigate the extent to which CSMN can be regenerated for therapeutic application.
描述(由申请人提供):本提案的目的是确定指导皮质脊髓运动神经元(CSMN)命运特异性和谱系特异性发育的分子信号。这些神经元是临床相关的群体,在人类中,选择性地死于神经退行性疾病,包括肌萎缩性侧索硬化症(ALS)、遗传性痉挛性截瘫(HSP)和原发性侧索硬化症(PLS)。它们也是脊髓损伤(SCI)中永久性损伤和瘫痪的细胞。在神经系统中,由于组织的细胞异质性令人惊讶,再加上无法区分和纯化一种神经元类型与其他神经元类型,因此旨在调查单个神经元类型的出生、存活和连接的分子控制的研究一直非常困难。在我的博士后工作中,我直接在皮层中解决了这个问题,并且已经确定并开始功能性地表征第一系列基因,这些基因以组合方式唯一地识别CSMN作为这种神经元类型的发育[1]。与目前的建议最相关的是,我们发现转录因子Fezf 2是一个“主基因”,它是CSMN诞生所必需的,(即Fezf 2-/-小鼠的皮质中不存在CSMN),并且至少部分地足以指导皮质祖细胞向CSMN的命运特化(即Fezf 2水平升高可诱导注定形成上层神经元的祖细胞朝向形成CSMN和深层神经元的“命运转换”)[2]。在这里,我建立在这个以前的工作和新的数据从我自己的实验室直接调查这个建议的中心问题:(1):什么是分子信号,指示命运的规范和早期发展的皮质祖细胞到CSMN?(Aim 1和目的2)(2):有丝分裂后的不同皮质类型的神经元保持产生CSMN的能力,以响应Fezf 2,或者说,神经元谱系规格的决定,并仅在祖细胞阶段调制?(Aim 3)我们提出了先前发表的工作和大量的新数据,支持这些实验的可行性,以及结果与开发新的治疗策略以取代皮质脊髓回路神经退行性和创伤性疾病中的CSMN的直接相关性。
公共卫生关系:CNS的不同神经退行性疾病的典型特征在于特定神经元类型的进行性死亡。皮质脊髓运动神经元(CSMN)变性和损伤是运动神经元疾病(包括ALS)和脊髓损伤的关键组成部分。在这里,我们建议确定的分子信号,指导这种临床相关的神经元类型的诞生,并调查CSMN可以再生的治疗应用的程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Arlotta其他文献
Paola Arlotta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Arlotta', 18)}}的其他基金
Systematic identification of enhancers to target the breadth of excitatory and inhibitory neuronal cell types in the cerebral cortex
系统鉴定增强剂以靶向大脑皮层兴奋性和抑制性神经元细胞类型的广度
- 批准号:
10512459 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10686208 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10502460 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10523550 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10664007 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10404657 - 财政年份:2018
- 资助金额:
$ 36.59万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10159316 - 财政年份:2018
- 资助金额:
$ 36.59万 - 项目类别:
Modeling ASD-linked genetic mutations in 3D human brain organoids
在 3D 人脑类器官中模拟 ASD 相关基因突变
- 批准号:
10308455 - 财政年份:2018
- 资助金额:
$ 36.59万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
10223999 - 财政年份:2017
- 资助金额:
$ 36.59万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
9757833 - 财政年份:2017
- 资助金额:
$ 36.59万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists