Statistical Methods for the Analysis of ChlP-chip Data

ChlP 芯片数据分析的统计方法

基本信息

  • 批准号:
    7799293
  • 负责人:
  • 金额:
    $ 28.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-26 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): With many genome-sequencing projects coming to an end, the biggest remaining challenge is to comprehend the information encoded in these sequences. Identifying interactions between transcription factors (TFs) and their DMA binding sites is an integral part of this challenge. These interactions control critical steps in cell functions, and their dysfunction can significantly contribute to the progression of various diseases. ChlP-chip experiments that couple chromatin immunoprecipitation with DMA microarray analysis have become powerful tools for the genome-wide identification and characterization of transcription factor binding sites. These experiments produce massive amounts of noisy data with small number of replicates and therefore require innovative robust statistical analysis methods. The objectives of this proposal are to develop, evaluate and disseminate statistical methods for analyzing data from ChlP-chip experiments. These objectives will be accomplished through four specific aims: (1) Development of robust probabilistic methods for detecting TF bound regions. These methods will utilize the information common across probes on tiling arrays to increase power in small sample sizes. (2) Extension of the methods in Aim-1 to deal with array designs where probe sequences overlap and observations from nearby probes exhibit long-range spatial dependencies. As a result, we will develop rigorous statistical inference procedures for general tiling array designs. (3) Development of an adaptive framework for incorporating quantitative information from ChlP-chip experiments into motif finding. This will connect the first stage of the ChlP-chip data analysis, namely identification of the bound regions, with the downstream sequence analysis thereby boosting the sensitivity and specificity of the motif finding task. (4) Implementation of the statistical methods developed as part of this research in statistical packages. The resulting packages will be available to the scientific community both in stand-alone versions and as part of the Bioconductor Project which is an open source and development software project for the analysis of the genomic data. Successful completion of the proposed research will result in substantially improved statistical methods for the analysis of ChlP-chip experiments.
描述(由申请人提供):随着许多基因组测序项目即将结束,剩下的最大挑战是理解这些序列中编码的信息。识别转录因子(TF)和它们的DMA结合位点之间的相互作用是这一挑战的一个组成部分。这些相互作用控制着细胞功能的关键步骤,它们的功能障碍可以显著促进各种疾病的进展。ChIP芯片实验耦合染色质免疫沉淀与DMA微阵列分析已成为强大的工具,全基因组的识别和转录因子结合位点的表征。这些实验产生大量的噪声数据,重复次数很少,因此需要创新的强大的统计分析方法。该提案的目标是开发、评估和传播用于分析ChIP芯片实验数据的统计方法。这些目标将通过以下四个具体目标来实现:(1)开发用于检测TF结合区域的鲁棒概率方法。这些方法将利用平铺阵列上探针之间的共同信息,以增加小样本量的功效。(2)扩展Aim-1中的方法,以处理探针序列重叠且附近探针的观察结果显示出长程空间依赖性的阵列设计。因此,我们将制定严格的统计推断程序一般平铺阵列设计。(3)开发一个自适应框架,将ChIP芯片实验的定量信息纳入基序发现。这将连接ChIP-芯片数据分析的第一阶段,即结合区域的鉴定,与下游序列分析,从而提高基序发现任务的灵敏度和特异性。(4)在统计软件包中实施作为本研究一部分开发的统计方法。由此产生的软件包将以独立版本和作为Bioconductor项目的一部分提供给科学界,Bioconductor项目是一个用于分析基因组数据的开源和开发软件项目。成功完成拟议的研究将导致大幅改善ChIP芯片实验分析的统计方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunduz Keles其他文献

Sunduz Keles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sunduz Keles', 18)}}的其他基金

Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
  • 批准号:
    10740240
  • 财政年份:
    2023
  • 资助金额:
    $ 28.19万
  • 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
  • 批准号:
    10056966
  • 财政年份:
    2020
  • 资助金额:
    $ 28.19万
  • 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
  • 批准号:
    8284083
  • 财政年份:
    2012
  • 资助金额:
    $ 28.19万
  • 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
  • 批准号:
    10413927
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
  • 批准号:
    8605900
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
  • 批准号:
    8785690
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
  • 批准号:
    7253510
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
  • 批准号:
    8370723
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
  • 批准号:
    9344668
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
  • 批准号:
    10610872
  • 财政年份:
    2007
  • 资助金额:
    $ 28.19万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.19万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了