Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
基本信息
- 批准号:7253510
- 负责人:
- 金额:$ 28.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): With many genome-sequencing projects coming to an end, the biggest remaining challenge is to comprehend the information encoded in these sequences. Identifying interactions between transcription factors (TFs) and their DMA binding sites is an integral part of this challenge. These interactions control critical steps in cell functions, and their dysfunction can significantly contribute to the progression of various diseases. ChlP-chip experiments that couple chromatin immunoprecipitation with DMA microarray analysis have become powerful tools for the genome-wide identification and characterization of transcription factor binding sites. These experiments produce massive amounts of noisy data with small number of replicates and therefore require innovative robust statistical analysis methods. The objectives of this proposal are to develop, evaluate and disseminate statistical methods for analyzing data from ChlP-chip experiments. These objectives will be accomplished through four specific aims: (1) Development of robust probabilistic methods for detecting TF bound regions. These methods will utilize the information common across probes on tiling arrays to increase power in small sample sizes. (2) Extension of the methods in Aim-1 to deal with array designs where probe sequences overlap and observations from nearby probes exhibit long-range spatial dependencies. As a result, we will develop rigorous statistical inference procedures for general tiling array designs. (3) Development of an adaptive framework for incorporating quantitative information from ChlP-chip experiments into motif finding. This will connect the first stage of the ChlP-chip data analysis, namely identification of the bound regions, with the downstream sequence analysis thereby boosting the sensitivity and specificity of the motif finding task. (4) Implementation of the statistical methods developed as part of this research in statistical packages. The resulting packages will be available to the scientific community both in stand-alone versions and as part of the Bioconductor Project which is an open source and development software project for the analysis of the genomic data. Successful completion of the proposed research will result in substantially improved statistical methods for the analysis of ChlP-chip experiments.
描述(由申请人提供):随着许多基因组测序项目的结束,最大的挑战是理解这些序列中编码的信息。确定转录因子(tf)与其DMA结合位点之间的相互作用是这一挑战的组成部分。这些相互作用控制着细胞功能的关键步骤,它们的功能障碍可以显著促进各种疾病的进展。将染色质免疫沉淀与DMA微阵列分析相结合的chlp芯片实验已成为全基因组鉴定和表征转录因子结合位点的有力工具。这些实验产生大量的噪声数据和少量的重复,因此需要创新的稳健的统计分析方法。本提案的目标是发展、评估和传播用于分析chlp芯片实验数据的统计方法。这些目标将通过以下四个具体目标来实现:(1)开发检测TF结合区域的稳健概率方法。这些方法将利用平铺阵列上探针之间的共同信息来增加小样本量的功率。(2)对Aim-1中的方法进行了扩展,以处理探针序列重叠且附近探测器的观测结果具有远程空间依赖性的阵列设计。因此,我们将为一般平铺阵列设计开发严格的统计推断程序。(3)开发一个自适应框架,将从chlp芯片实验中获得的定量信息纳入基序发现。这将把chlp芯片数据分析的第一阶段,即结合区域的识别,与下游序列分析联系起来,从而提高motif查找任务的敏感性和特异性。(4)在统计包中执行作为本研究的一部分制定的统计方法。最终的软件包将以独立版本的形式提供给科学界,并作为Bioconductor项目的一部分提供给科学界。Bioconductor项目是一个用于分析基因组数据的开源和开发软件项目。本研究的成功完成将大大改进chlp芯片实验分析的统计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunduz Keles其他文献
Sunduz Keles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunduz Keles', 18)}}的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:
10056966 - 财政年份:2020
- 资助金额:
$ 28.24万 - 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:
8284083 - 财政年份:2012
- 资助金额:
$ 28.24万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10413927 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8785690 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8605900 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8370723 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
- 批准号:
9344668 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7799293 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10610872 - 财政年份:2007
- 资助金额:
$ 28.24万 - 项目类别:
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Statistical methods for analysis of high-dimensional mediation pathways
高维中介路径分析的统计方法
- 批准号:
10582932 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Statistical Methods for Human Glycome Data Analysis
人类糖组数据分析的统计方法
- 批准号:
23K11021 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
DMS/NIGMS 1: Statistical Methods for Design and Analysis of Clinical-scale Single Cell Studies
DMS/NIGMS 1:临床规模单细胞研究设计和分析的统计方法
- 批准号:
2245575 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Standard Grant
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
- 批准号:
2232547 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Standard Grant
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2022
- 资助金额:
$ 28.24万 - 项目类别:
Discovery Grants Program - Individual