High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
基本信息
- 批准号:10610872
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBioconductorBiodiversityBiologic CharacteristicBiologicalCellsChromatinClinicalCommunitiesComputer AnalysisComputer softwareDataData AnalyticsData SetDedicationsDevelopmentDimensionsDiseaseEnvironmental Risk FactorGene Expression RegulationGenesGeneticGenomeGenomic SegmentGenomicsHeterogeneityHi-CHumanHuman GenomeIndividualInterventionLaboratory OrganismLinkMammalian CellMapsMeasurementMediatingMethodologyMethodsModalityModelingMolecularMolecular ConformationMultiomic DataMusNatureNoiseNon-Insulin-Dependent Diabetes MellitusNucleotidesPhenotypePredispositionPropertyQuantitative Trait LociRegulator GenesResearchResolutionResourcesRiskRoleSignal TransductionSourceStatistical MethodsTechnologyTrainingTranslationsUntranslated RNAValidationVariantautoencodercell typechromosome conformation capturedata integrationdata modelingdenoisingepigenomeepigenomicsexperimental studyflexibilityfollow-upgenome wide association studyhigh dimensionalityhigh throughput technologyimprovedinnovationinterestmodel organismmultiple omicsnovelopen sourceprogramsrisk variantscale upsimulationsingle cell sequencingtraittranscriptomicstranslational genetics
项目摘要
Project Summary
Gene regulatory programs of mammalian cells are largely influenced by long-range
chromatin interactions. We propose to develop robust and scalable statistical methods
for two critical genomic inference problems hinging upon long-range chromatin
interactions. First, the study of long-range interactions at the single cell-level with 3C-
based method scHi-C is fundamental to fully understanding cell type-specific gene
regulation. scHi-C measurements harbor unexplored biological diversity. However, these
measurements are prone to extreme sparsity, technological bias, and noise. While initial
inference methods simply focused on lower dimensional representations of scHi-C data,
lack of a scalable framework that can exploit nonlinearities in de-noising of the data
impedes key inference tasks from these experiments. We will address these critical
shortcomings by developing a novel deep generative model for scHi-C data. By de-
noising the data, these methods will improve the power with which signals of interest can
be studied. Second, while advances in sequencing and large-scale availability of
epigenome data improved the power and interpretation of genome-wide association
studies (GWAS), shortcomings in identifying which genes noncoding SNPs might be
impacting through long-range chromatin interactions hinder the translation of GWAS
findings into clinical interventions. Leveraging existing large-scale studies of diversity
outbred mice, we will develop a rigorous framework that integrates multi-omics functional
data modalities to fine-map model organism molecular quantitative trait loci and transfer
the results to humans for linking noncoding GWAS SNPs to their effector, i.e.,
susceptibility, genes. Large-scale application with type 2 diabetes (T2D) traits will deliver
candidate T2D effector genes and their regulatory loci that are amenable for
experimental follow-up. Both aims will be accomplished through a combination of
methodological development, theoretical analysis, data-driven simulation, computational
analysis, and experimental validation. Statistical resources generated from this project
will be disseminated as open-source software. Successful completion of the project will
help to ensure that maximal information is obtained from powerful scHi-C experiments
and model organism multi-omics data.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunduz Keles其他文献
Sunduz Keles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunduz Keles', 18)}}的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:
10056966 - 财政年份:2020
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:
8284083 - 财政年份:2012
- 资助金额:
$ 37.88万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10413927 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8605900 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8785690 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7253510 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8370723 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7799293 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
- 批准号:
9344668 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant