Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
基本信息
- 批准号:7788024
- 负责人:
- 金额:$ 16.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-24 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArtsAwardCalibrationCancer BiologyCancer ModelClinical DataClinical TrialsColorectal CancerCommunitiesComplexComputer SimulationComputer softwareComputersDataDecision AnalysisDevelopmentDisease modelDoctor of PhilosophyEngineeringEnrollmentEthicsEventGeneral HospitalsGoalsGrowthGuidelinesHealth PolicyHealthcareHybridsInstitutesInstitutionInternetInterventionK-Series Research Career ProgramsLanguageLifeMalignant NeoplasmsMalignant neoplasm of lungMassachusettsMeasuresMentorsMentorshipMethodologyMethodsModelingNatural HistoryNeoplasm MetastasisOutcomeOutcomes ResearchPerformancePhysicsPoliciesPolicy MakerPolymersProbabilityProceduresProcessPublic HealthRandomized Clinical TrialsRandomized Controlled Clinical TrialsResearchResearch PersonnelResearch TrainingSamplingScienceScreening for cancerSenior ScientistSpace ModelsSpeedStudy modelsTechniquesTechnology AssessmentTestingTimeTrainingYincareercareer developmentdensitydesigndesign and constructionexperiencefollow-upimprovedinstructormedical schoolsmodel developmentmodels and simulationmortalityphysical scienceprogramspublic health relevancesimulationskillssymposiumtooltumor growthtumor registry
项目摘要
DESCRIPTION (provided by applicant): Cancer screening programs are increasingly evaluated with simulation models because they allow health policy makers to consider scenarios that could not be evaluated by randomized clinical trials for practical, financial or ethical reasons. However, few of these models employ rigorous mathematical methods for model calibration. Calibration of cancer screening simulation models to existing clinical data is vital to accurate model prediction. The applicant's immediate goal is to adapt, extend, and promote the use of multi-criteria optimization techniques to improve the calibration of simulation models for cancer screening policy prediction and planning. The applicant, Chung Yin Kong, PhD, is a senior scientist at the Massachusetts General Hospital's Institute for Technology Assessment (ITA) and an instructor at Harvard Medical School. He is trained in Physics (BS) and Polymer Science and Engineering (PhD). This proposed research is tailored to utilize his computer modeling background in physical science as well as the numerous simulation projects at the ITA to test his hypotheses for improving the design and construction of cancer screening models with multi-criteria optimization techniques. The specific aims of the research plan are: (1) to adapt multi-criteria optimization to provide automated procedures for model calibration. As an example, optimization algorithms will be applied to and evaluated with two existing microsimulation models at the ITA: the Lung Cancer Policy Model (LCPM) and the Simulation Model of Colorectal Cancer (SimCRC) model; (2) to extend the use of multi-criteria optimization techniques to aid the design of the underlying cancer biology components in the models and to improve computational speed; (3) to promote the use of multi-criteria optimization techniques among cancer screening modelers. The experience of adapting and extending these techniques will be developed into a calibration platform with instructional diagrams, tutorials, and software modules, which will be distributed on the Internet and at scientific conferences. The end results of the proposed project will improve the speed of both the calibration process and the simulation models themselves. The proposed training plan includes mentoring, coursework, and career development activities preparing him to undertake the proposed research and to fully-transition into the field of cancer simulation modeling. The research and training of this proposed project will be performed under the mentorship of Dr. G. Scott Gazelle, an internationally known expert in cancer outcome research and decision analysis science. The applicant's long term career goal is to become a leader in developing state-of-the-art simulation methods for disease modeling. This award will advance the applicant's academic career and help him to achieve his goal to be a productive, independent investigator.
PUBLIC HEALTH RELEVANCE: This research is relevant to public health because it improves the accuracy of simulation models for cancer screening policy prediction and planning.
癌症筛查计划越来越多地使用模拟模型进行评估,因为它们允许卫生政策制定者考虑由于实际,财务或道德原因而无法通过随机临床试验进行评估的情况。然而,这些模型很少采用严格的数学方法进行模型校准。根据现有临床数据校准癌症筛查模拟模型对于准确的模型预测至关重要。申请人的近期目标是适应,扩展和促进多标准优化技术的使用,以改善癌症筛查政策预测和规划的模拟模型的校准。申请人Chung Yin Kong博士是马萨诸塞州总医院技术评估研究所(ITA)的资深科学家,也是哈佛医学院的讲师。他接受过物理学(BS)和聚合物科学与工程(PhD)的培训。这项拟议的研究是专门利用他在物理科学的计算机建模背景,以及在ITA的众多模拟项目,以测试他的假设,以改善设计和建设的癌症筛查模型与多标准优化技术。研究计划的具体目标是:(1)采用多标准优化,为模型校准提供自动化程序。举例来说,优化算法将应用于ITA现有的两个微观模拟模型:肺癌政策模型(LCPM)和结直肠癌模拟模型(SimCRC),并对其进行评估;(2)扩展多标准优化技术的使用,以帮助设计模型中的基本癌症生物学组件,并提高计算速度;(3)在癌症筛查模型制作者中推广多准则优化技术的使用。调整和扩展这些技术的经验将被开发成一个校准平台,包括教学图表、教程和软件模块,并将在互联网和科学会议上分发。拟议项目的最终结果将提高校准过程和仿真模型本身的速度。拟议的培训计划包括指导,课程和职业发展活动,使他能够进行拟议的研究并完全过渡到癌症模拟建模领域。本项目的研究和培训将在G。Scott Gazelle是国际知名的癌症结果研究和决策分析科学专家。申请人的长期职业目标是成为开发最先进的疾病建模模拟方法的领导者。该奖项将促进申请人的学术生涯,并帮助他实现成为一名富有成效的独立调查员的目标。
公共卫生相关性:这项研究与公共卫生有关,因为它提高了癌症筛查政策预测和规划模拟模型的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung Yin Kong其他文献
Chung Yin Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung Yin Kong', 18)}}的其他基金
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:
10608446 - 财政年份:2023
- 资助金额:
$ 16.38万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10451668 - 财政年份:2021
- 资助金额:
$ 16.38万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10654616 - 财政年份:2021
- 资助金额:
$ 16.38万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10317717 - 财政年份:2021
- 资助金额:
$ 16.38万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10450181 - 财政年份:2021
- 资助金额:
$ 16.38万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10668248 - 财政年份:2021
- 资助金额:
$ 16.38万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10317359 - 财政年份:2021
- 资助金额:
$ 16.38万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8548101 - 财政年份:2010
- 资助金额:
$ 16.38万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8799653 - 财政年份:2010
- 资助金额:
$ 16.38万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8525092 - 财政年份:2009
- 资助金额:
$ 16.38万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.38万 - 项目类别:
Continuing Grant