Rule-Out Myocardial Infarction Using Computed Assisted Tomography-ROMICATII,DCC

使用计算机辅助断层扫描排除心肌梗塞-ROMICATII,DCC

基本信息

  • 批准号:
    7580254
  • 负责人:
  • 金额:
    $ 38.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application represents the Clinical Coordinating Center of the overall proposal. Patients with acute chest pain and normal or non-diagnostic electrocardiograms (ECGs) represent a cohort whose management is notably inefficient and diagnostically challenging. Typical diagnostic testing that would allow physicians to rule out the occurrence of myocardial ischemia (e.g. nuclear imaging, echocardiography, and exercise treadmill ECG) is often not available for the initial emergency department (ED) evaluation, most of these patients are hospitalized for 24 to 36 hours to exclude the presence of acute coronary syndrome (ACS). Of the six million acute chest pain patients admitted each year in the U.S. under these conditions, <10% ultimately receive a diagnosis of ACS. Moreover, inpatient care for negative evaluations imparts an economic burden in excess of $8 billion annually. Recent advances in cardiac computed tomography (CT) technology allow for accurate detection of coronary atherosclerotic plaque and stenosis, and also allow physicians to assess global and regional LV function. Blinded observational studies demonstrate that absence of coronary atherosclerotic plaque as detected by cardiac CT is a powerful predictor of the absence of ACS (negative predictive value [NPV] of 100%). Thus, the implementation of cardiac CT in the early ED triage process may enable immediate and safe discharge of a significant fraction of acute chest pain patients without further testing. However, it is equally important to determine the effect of cardiac CT on the management of admitted patients, in particular the length of hospital stay, the number of invasive coronary angiograms, and coronary revascularizations. The growing availability of cardiac CT in EDs across the U.S. expands the opportunities for its clinical application, but also heightens the need to define its appropriate use in the evaluation of patients with acute chest pain. To address this need, we propose to perform a rigorous and adequately powered randomized diagnostic trial in 1000 subjects with low to intermediate likelihood of ACS to determine the efficiency of integrating cardiac CT, along with the information it provides on coronary artery disease (CAD) and left ventricular (LV) function, into the diagnostic workup of patients with acute chest pain. Patients will be randomized to receive the standard ED triage or the standard ED triage supplemented with a cardiac CT. Subjects will either be admitted or discharged. Admitted subjects will undergo further evaluation and testing. We will then determine whether CT increases the rate of direct ED discharges, decreases the length of hospital stay while not increasing the number of invasive coronary angiograms. To critically evaluate whether cardiac CT is also cost-effective, we will compare the 30-day costs for each strategy and subsequently perform decision and economic Markov modeling to estimate quality adjusted life expectancy and life-time medical costs of the two strategies. Overall, we hope this trial will provide a definitive answer as to whether cardiac CT can be efficiently used to discharge patients directly from the ED and clarify whether an AHA/ACC class IA recommendation is justified. Public Health Relevance: Cardiac CT technology will soon become available to most emergency departments in the United States. While some experts already promote the use of cardiac CT in patients with acute chest pain, only an adequately designed and powered multi-center randomized diagnostic trial will provide evidence whether the use of cardiac CT is justified because it is equally safe but more effective than standard care. Optimally this study will provide professional societies with adequate information to justify recommendations on the use of cardiac CT (i.e. by issuing a class IA recommendation) in the ED evaluation of patients with acute chest pain.
描述(由申请人提供): 本申请代表总体方案的临床协调中心。急性胸痛和正常或非诊断性心电图(ECG)的患者代表了一个队列,其管理效率明显低下,诊断具有挑战性。允许医生排除心肌缺血发生的典型诊断测试(例如核成像、超声心动图和运动平板心电图)通常不可用于初始急诊科(艾德)评估,这些患者中的大多数住院24至36小时以排除急性冠状动脉综合征(ACS)的存在。在美国,每年有600万急性胸痛患者在这些情况下入院,<10%的患者最终被诊断为ACS。此外,对负面评价的住院治疗每年造成超过80亿美元的经济负担。心脏计算机断层扫描(CT)技术的最新进展允许准确检测冠状动脉粥样硬化斑块和狭窄,也允许医生评估整体和局部LV功能。设盲观察性研究表明,心脏CT检测到冠状动脉粥样硬化斑块的缺失是ACS缺失的有力预测因子(阴性预测值[NPV]为100%)。因此,在早期艾德分诊过程中实施心脏CT可以使大部分急性胸痛患者立即安全出院,而无需进一步测试。然而,同样重要的是确定心脏CT对住院患者管理的影响,特别是住院时间、有创冠状动脉造影次数和冠状动脉血运重建。心脏CT在美国急诊科的日益普及扩大了其临床应用的机会,但也增加了确定其在急性胸痛患者评估中的适当用途的必要性。为了满足这一需求,我们建议在1000例低至中等ACS可能性的受试者中进行严格且具有充分把握度的随机诊断试验,以确定将心脏CT沿着提供的冠状动脉疾病(CAD)和左心室(LV)功能信息整合到急性胸痛患者的诊断检查中的效率。患者将随机接受标准艾德分诊或标准艾德分诊辅以心脏CT。受试者将入院或出院。入院的受试者将接受进一步的评估和测试。然后我们将确定CT是否增加直接艾德出院率,减少住院时间,而不增加有创冠状动脉造影的数量。为了严格评估心脏CT是否也具有成本效益,我们将比较每种策略的30天成本,随后进行决策和经济马尔可夫模型,以估计两种策略的质量调整后的预期寿命和终身医疗成本。总体而言,我们希望这项试验将提供一个明确的答案,心脏CT是否可以有效地用于直接从艾德出院的患者,并澄清AHA/ACC IA级建议是否合理。公共卫生相关性:心脏CT技术将很快在美国的大多数急诊科使用。虽然一些专家已经提倡在急性胸痛患者中使用心脏CT,但只有充分设计和动力的多中心随机诊断试验才能提供证据证明使用心脏CT是否合理,因为它与标准治疗一样安全,但更有效。最佳情况下,本研究将为专业协会提供充分的信息,以证明在急性胸痛患者的艾德评价中使用心脏CT的建议(即通过发布IA类建议)的合理性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Alan SCHOENFELD其他文献

DAVID Alan SCHOENFELD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Alan SCHOENFELD', 18)}}的其他基金

CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
  • 批准号:
    8874281
  • 财政年份:
    2014
  • 资助金额:
    $ 38.32万
  • 项目类别:
CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
  • 批准号:
    9270066
  • 财政年份:
    2014
  • 资助金额:
    $ 38.32万
  • 项目类别:
CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
  • 批准号:
    8705805
  • 财政年份:
    2014
  • 资助金额:
    $ 38.32万
  • 项目类别:
CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
  • 批准号:
    9059765
  • 财政年份:
    2014
  • 资助金额:
    $ 38.32万
  • 项目类别:
Rule-Out Myocardial Infarction Using Computed Assisted Tomography-ROMICATII,DCC
使用计算机辅助断层扫描排除心肌梗塞-ROMICATII,DCC
  • 批准号:
    8323156
  • 财政年份:
    2009
  • 资助金额:
    $ 38.32万
  • 项目类别:
Rule-Out Myocardial Infarction Using Computed Assisted Tomography-ROMICATII,DCC
使用计算机辅助断层扫描排除心肌梗塞-ROMICATII,DCC
  • 批准号:
    8116475
  • 财政年份:
    2009
  • 资助金额:
    $ 38.32万
  • 项目类别:
Rule-Out Myocardial Infarction Using Computed Assisted Tomography-ROMICATII,DCC
使用计算机辅助断层扫描排除心肌梗塞-ROMICATII,DCC
  • 批准号:
    7930687
  • 财政年份:
    2009
  • 资助金额:
    $ 38.32万
  • 项目类别:
Core C: Clinical Biostatistics Core
核心 C:临床生物统计学核心
  • 批准号:
    7195401
  • 财政年份:
    2006
  • 资助金额:
    $ 38.32万
  • 项目类别:
CORE--DATABASE MANAGEMENT AND STATISTICS
核心——数据库管理与统计
  • 批准号:
    6798082
  • 财政年份:
    2004
  • 资助金额:
    $ 38.32万
  • 项目类别:
Core C: Clinical Biostatistics Core
核心 C:临床生物统计学核心
  • 批准号:
    7924079
  • 财政年份:
    2001
  • 资助金额:
    $ 38.32万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 38.32万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了