Regulation of Nitrogen Metabolism in Bacillus subtilis
枯草芽孢杆菌氮代谢的调节
基本信息
- 批准号:7904254
- 负责人:
- 金额:$ 38.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-09-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAlanineAmino AcidsBacillus subtilisBacteriaBinding SitesBiochemicalC-terminalCellsCollaborationsComplexCysteineDNADNA BindingDeoxyribonucleasesDevelopmentDimerizationEnterococcusEnzymesFeedbackFluorescence Resonance Energy TransferGene ExpressionGeneticGenetic ScreeningGenus staphylococcusGlutamate-Ammonia LigaseGlutamineGoalsGram-Positive BacteriaGrantGrowthHumanIn VitroLaboratoriesLacZ GenesListeriaMapsMediatingMetabolismMicrobial BiofilmsModelingModificationMolecularMolecular AnalysisMolecular ChaperonesMolecular ConformationMutagenesisMutationN-terminalNMR SpectroscopyNitrogenOrthologous GenePeptide HydrolasesPhosphorylationPhosphotransferasesPhysiologyProcessProductionProtein ConformationProtein FootprintingProteinsProteobacteriaRegulationResearchRoleSignal TransductionSite-Directed MutagenesisSourceStreptococcusStructureSurfaceSystemTestingTranscriptional RegulationX-Ray Crystallographyin vivoinsightmutantnitrogen metabolismnovelpathogenpathogenic bacteriapreventprotein protein interactionpublic health relevanceresearch studyresponsetranscription factor
项目摘要
DESCRIPTION (provided by applicant): Nitrogen metabolism in the low G+C Gram-positive bacterium Bacillus subtilis is controlled by a novel regulatory system where the enzyme glutamine synthetase is required for both glutamine synthesis and the direct control of the activity of two transcription factors GlnR and TnrA. The feedback-inhibited form of glutamine synthetase inhibits the activity of TnrA by forming a stable TnrA-glutamine synthetase complex. In contrast, GlnR DNA binding is activated by a transient association with feedback-inhibited glutamine synthetase which stabilizes the GlnR-DNA complexes. Interestingly, this same GlnR-glutamine synthetase nitrogen regulatory system is present in a number of important low G+C Gram-positive pathogens. The major focus of the next project period will be directed toward a detailed analysis of the molecular mechanisms by which feedback-inhibited glutamine synthetase regulates the activity of GlnR and TnrA. The mechanism by which the C-terminal region of GlnR autoinhibits GlnR dimerization will be investigated by identifying the intramolecular interactions that occur between the GlnR C-terminal and N-terminal domains and the amino acid residues required for these interaction(s). The protein-protein interfaces present in the complexes of both TnrA-glutamine synthetase and GlnR-glutamine synthetase will be characterized using mutational, biochemical and structural approaches. Site-directed mutagenesis will be used to identify amino acid residues in the active site of glutamine synthetase required for feedback inhibition. Characterization of biofilm development in B. subtilis indicates that this process is influenced by the nitrogen status of the cell. The interrelationship between nitrogen metabolism and biofilm formation will be explored by identifying the mechanisms responsible for nitrogen regulation of the biofilm matrix protein TasA and the reduced expression of glutamine synthetase in sinR mutants. Genetic experiments suggest that constitutive biofilm formation seen in glutamine synthetase mutants results from increased levels of Spo0A phosphorylation. This will be confirmed by examining expression of Spo0A~P-dependent lacZ fusions in wild-type and mutant cells. PUBLIC HEALTH RELEVANCE: A fundamental question in physiology is how bacteria adapt to growth on different sources of nitrogen. The proposed research will investigate a novel mechanism of nitrogen signal transduction in the low G+C Gram-positive bacterium Bacillus subtilis where the enzyme glutamine synthetase directly controls the activity of the transcription factors TnrA and GlnR. Since the GlnR-glutamine synthetase regulatory system is present in a number of important low G+C Gram-positive pathogens, these studies will provide insight into how nitrogen metabolism is regulated in these bacteria.
描述(由申请人提供):低G+C革兰氏阳性细菌枯草芽孢杆菌的氮代谢由一个新的调节系统控制,其中谷氨酰胺合成酶既需要谷氨酰胺合成,也需要直接控制两个转录因子GlnR和TnrA的活性。反馈抑制形式的谷氨酰胺合成酶通过形成稳定的TnrA-谷氨酰胺合成酶复合物来抑制TnrA的活性。相反,GlnR DNA结合是通过与反馈抑制的谷氨酰胺合成酶的短暂结合而激活的,从而稳定了GlnR-DNA复合物。有趣的是,同样的glnr -谷氨酰胺合成酶氮调控系统存在于许多重要的低G+C革兰氏阳性病原体中。下一个项目阶段的主要重点将是对反馈抑制谷氨酰胺合成酶调节GlnR和TnrA活性的分子机制进行详细分析。通过鉴定GlnR c端和n端结构域之间发生的分子内相互作用以及这些相互作用所需的氨基酸残基,将研究GlnR c端区域自身抑制GlnR二聚化的机制。tnra -谷氨酰胺合成酶和glnr -谷氨酰胺合成酶复合物中存在的蛋白-蛋白界面将通过突变,生化和结构方法进行表征。位点定向诱变将用于鉴定反馈抑制所需的谷氨酰胺合成酶活性位点的氨基酸残基。枯草芽孢杆菌生物膜发育的特征表明,这一过程受细胞氮状态的影响。通过确定sinR突变体中氮调控生物膜基质蛋白TasA和谷氨酰胺合成酶表达减少的机制,探索氮代谢与生物膜形成之间的相互关系。遗传实验表明,在谷氨酰胺合成酶突变体中看到的组成型生物膜的形成是由于Spo0A磷酸化水平的增加。这将通过检测Spo0A~ p依赖性lacZ融合在野生型和突变型细胞中的表达来证实。公共卫生相关性:生理学中的一个基本问题是细菌如何适应不同氮源的生长。本研究将探索低G+C革兰氏阳性细菌枯草芽孢杆菌中氮信号转导的新机制,其中谷氨酰胺合成酶直接控制转录因子TnrA和GlnR的活性。由于glnr -谷氨酰胺合成酶调节系统存在于许多重要的低G+C革兰氏阳性病原体中,这些研究将为了解这些细菌中氮代谢是如何调节的提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN H. FISHER其他文献
SUSAN H. FISHER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN H. FISHER', 18)}}的其他基金
REGULATION OF HISTIDINE UTILIZATION IN BACILLUS SUBTILIS
枯草芽孢杆菌中组氨酸利用的调控
- 批准号:
2189440 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
REGULATION OF HISTIDINE UTILIZATION IN BACILLUS SUBTILIS
枯草芽孢杆菌中组氨酸利用的调控
- 批准号:
2022876 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
REGULATION OF NITROGEN METABOLISM IN BACILLUS SUBTILIS
枯草芽孢杆菌氮代谢的调控
- 批准号:
6519584 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
Regulation of Nitrogen Metabolism in Bacillus subtilis
枯草芽孢杆菌氮代谢的调控
- 批准号:
6768663 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
Regulation of Nitrogen Metabolism in Bacillus subtilis
枯草芽孢杆菌氮代谢的调节
- 批准号:
8294687 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
Regulation of Nitrogen Metabolism in Bacillus subtilis
枯草芽孢杆菌氮代谢的调控
- 批准号:
6611845 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
REGULATION OF HISTIDINE UTILIZATION IN BACILLUS SUBTILIS
枯草芽孢杆菌中组氨酸利用的调控
- 批准号:
2189443 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
Regulation of Nitrogen Metabolism in Bacillus subtilis
枯草芽孢杆菌氮代谢的调控
- 批准号:
8103030 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
REGULATION OF HISTIDINE UTILIZATION IN BACILLUS SUBTILIS
枯草芽孢杆菌中组氨酸利用的调控
- 批准号:
2519013 - 财政年份:1994
- 资助金额:
$ 38.93万 - 项目类别:
相似海外基金
Understanding the metabolic consequences of the systemic alanine depletion in pancreatic ductal adenocarcinoma
了解胰腺导管腺癌中全身丙氨酸消耗的代谢后果
- 批准号:
474506 - 财政年份:2022
- 资助金额:
$ 38.93万 - 项目类别:
Studentship Programs
Biosynthesis of bet-alanine in autolysosomes.
自溶酶体中 β-丙氨酸的生物合成。
- 批准号:
22K08681 - 财政年份:2022
- 资助金额:
$ 38.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing alanine transporters as therapeutic targets for pancreatic cancer
将丙氨酸转运蛋白描述为胰腺癌的治疗靶点
- 批准号:
466496 - 财政年份:2021
- 资助金额:
$ 38.93万 - 项目类别:
Studentship Programs
Understanding the requirements of alanine supply and demand in pancreatic ductal adenocarcinoma
了解胰腺导管腺癌中丙氨酸的供需要求
- 批准号:
451838 - 财政年份:2021
- 资助金额:
$ 38.93万 - 项目类别:
Operating Grants
Sensing living P. aeruginosa using D-alanine derived radiotracers
使用 D-丙氨酸衍生的放射性示踪剂感测活的铜绿假单胞菌
- 批准号:
10230924 - 财政年份:2021
- 资助金额:
$ 38.93万 - 项目类别:
Sensing living P. aeruginosa using D-alanine derived radiotracers
使用 D-丙氨酸衍生的放射性示踪剂感测活的铜绿假单胞菌
- 批准号:
10399593 - 财政年份:2021
- 资助金额:
$ 38.93万 - 项目类别:
Sensing living P. aeruginosa using D-alanine derived radiotracers
使用 D-丙氨酸衍生的放射性示踪剂感测活的铜绿假单胞菌
- 批准号:
10570987 - 财政年份:2021
- 资助金额:
$ 38.93万 - 项目类别:
Spot measurement of alanine radicals produced by irradiation and application of sugar radial to dosimeter
辐照产生的丙氨酸自由基的点测及糖自由基在剂量计中的应用
- 批准号:
19K05343 - 财政年份:2019
- 资助金额:
$ 38.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Metabolic significance of lysosomal beta-alanine
溶酶体β-丙氨酸的代谢意义
- 批准号:
18K08528 - 财政年份:2018
- 资助金额:
$ 38.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of dosimetry technique for IMRT using alanine dosimeter
使用丙氨酸剂量计开发 IMRT 剂量测定技术
- 批准号:
18K15615 - 财政年份:2018
- 资助金额:
$ 38.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists