Bayesian hierarchical nonlinear models for pharmacogenomic cytotoxicity studies

用于药物基因组细胞毒性研究的贝叶斯分层非线性模型

基本信息

  • 批准号:
    8286143
  • 负责人:
  • 金额:
    $ 11.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In the past five years, there has been an increased interest in "individualized medicine" and thus pharmacogenomics in cancer research has moved to the forefront as well. Pharmacogenetics is the study of the role of inheritance in individual variation in response to drugs, nutrients and other xenobiotics. In this post-genomic era, pharmacogenetics has evolved into pharmacogenomics, a discipline that has been heralded as one of the first major clinical applications of the striking advances that have occurred and continue to occur in human genomic science. Pharmacogenomic research has also been shifting from a focus on single genes and single SNPs to intragene haplotypes as well as pathway-based and genome-wide association studies. Pathway- based studies involve genes for which we already know function, while genome-wide association studies can help us to identify additional genes outside of known pathways of drug transport, drug metabolism and drug targets. As a result, these two approaches - pathway-based and genome-wide - are complementary. Statistical methods that combine various sources of data would likely provide novel insights, yet are lacking in pharmacogenomic studies. For example, the Mayo Pharmacogenomics Research Network (PGRN) group has been conducting multiple studies of the effect of anti- cancer drugs on lymphoblastoid cell lines to begin to define the effect of common genetic variation on drug response phenotypes. These phenotypes have included cytotoxicity measures at multiple concentrations, basal mRNA expression array data, post-drug treated mRNA expression data, metabolite data, resequencing data for genes in known drug pathways, and genome-wide genetic information in the form of single nucleotide polymorphisms (SNPs) across the genome. Currently, investigation of the genetic variation in these cell lines with drug concentration endpoints (cytotoxicity) is often completed by either analyzing a drug concentration endpoint measured at a single drug dosage or a summary measure of the dose-response curve (i.e., dose that inhibits 50% of cell growth, IC50). A more comprehensive analysis of the impact of genetic variation on all aspects of the dose- response curve may lend insight into the pharmacogenomics of a particular drug. A statistical approach that could account for disparate "layers" of genomic and cytotoxicity dose-response data is based on Bayesian methodology. Over the last few decades, applications of Bayesian methods by Markov Chain Monte Carlo (MCMC) have increased with the advancement of computers and computational methods, particular with application to genetic data. In this current grant application, we intend to develop novel pharmacogenomic models for the analysis of cytotoxicity data collected from the "Human Variation Panel" and pancreatic cancer patient cell lines treated with gemcitabine. These novel models will assist researchers in generating hypotheses that will lead to better understanding of the complex nature of the relationship between genotype and drug response, leading eventually to the development of "individualized therapy" for cancer patients.
描述(由申请人提供):在过去的五年里,人们对“个体化医学”的兴趣越来越大,因此癌症研究中的药物基因组学也走到了最前沿。药物遗传学是研究遗传在个体对药物、营养素和其他外源性物质的反应中的作用。在这个后基因组时代,药物遗传学已经演变成药物基因组学,这是一门被誉为人类基因组科学已经发生并将继续发生的惊人进展的第一个主要临床应用的学科。药物基因组学研究也从关注单基因和单SNP转向基因内单倍型以及基于途径和全基因组关联的研究。基于途径的研究涉及我们已经知道功能的基因,而全基因组关联研究可以帮助我们识别已知药物转运、药物代谢和药物靶点途径之外的其他基因。因此,这两种方法-基于途径和全基因组-是互补的。结合联合收割机各种数据来源的统计方法可能会提供新的见解,但缺乏药物基因组学研究。例如,马约药物基因组学研究网络(PGRN)小组已经进行了抗癌药物对淋巴母细胞样细胞系的影响的多项研究,以开始确定常见遗传变异对药物反应表型的影响。这些表型包括多个浓度下的细胞毒性测量、基础mRNA表达阵列数据、药物后处理的mRNA表达数据、代谢物数据、已知药物途径中基因的重测序数据以及以跨基因组的单核苷酸多态性(SNP)形式的全基因组遗传信息。 目前,对这些细胞系中具有药物浓度终点(细胞毒性)的遗传变异的研究通常通过分析在单一药物剂量下测量的药物浓度终点或剂量-反应曲线的汇总测量(即,抑制50%细胞生长的剂量,IC 50)。更全面地分析遗传变异对剂量-反应曲线各个方面的影响可能有助于深入了解特定药物的药物基因组学。可以解释基因组和细胞毒性剂量反应数据的不同“层”的统计方法基于贝叶斯方法。在过去的几十年里,贝叶斯方法的马尔可夫链蒙特卡罗(MCMC)的应用程序随着计算机和计算方法的进步而增加,特别是与遗传数据的应用。在目前的资助申请中,我们打算开发新的药物基因组学模型,用于分析从“人类变异组”和吉西他滨治疗的胰腺癌患者细胞系收集的细胞毒性数据。这些新的模型将帮助研究人员产生假设,这将导致更好地理解基因型和药物反应之间关系的复杂性质,最终导致癌症患者的“个体化治疗”的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brooke L Fridley其他文献

Polymorphisms in NF-κB Inhibitors and Risk of Epithelial Ovarian Cancer
  • DOI:
    10.1186/1471-2407-9-170
  • 发表时间:
    2009-06-06
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Kristin L White;Robert A Vierkant;Catherine M Phelan;Brooke L Fridley;Stephanie Anderson;Keith L Knutson;Joellen M Schildkraut;Julie M Cunningham;Linda E Kelemen;V Shane Pankratz;David N Rider;Mark Liebow;Lynn C Hartmann;Thomas A Sellers;Ellen L Goode
  • 通讯作者:
    Ellen L Goode
Gene set analysis of SNP data: benefits, challenges, and future directions
单核苷酸多态性数据的基因集分析:益处、挑战和未来方向
  • DOI:
    10.1038/ejhg.2011.57
  • 发表时间:
    2011-04-13
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Brooke L Fridley;Joanna M Biernacka
  • 通讯作者:
    Joanna M Biernacka

Brooke L Fridley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brooke L Fridley', 18)}}的其他基金

Analytical tools for studying the tumor microenvironment leveraging spatial transcriptomics
利用空间转录组学研究肿瘤微环境的分析工具
  • 批准号:
    10524921
  • 财政年份:
    2022
  • 资助金额:
    $ 11.33万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10438720
  • 财政年份:
    2021
  • 资助金额:
    $ 11.33万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10171106
  • 财政年份:
    2021
  • 资助金额:
    $ 11.33万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10676758
  • 财政年份:
    2021
  • 资助金额:
    $ 11.33万
  • 项目类别:
Bayesian Integrative Clustering for Determining Molecular Based Cancer Subty
用于确定基于分子的癌症亚型的贝叶斯整合聚类
  • 批准号:
    8625856
  • 财政年份:
    2013
  • 资助金额:
    $ 11.33万
  • 项目类别:
Bayesian hierarchical nonlinear models for pharmacogenomic cytotoxicity studies
用于药物基因组细胞毒性研究的贝叶斯分层非线性模型
  • 批准号:
    7984103
  • 财政年份:
    2011
  • 资助金额:
    $ 11.33万
  • 项目类别:
Integrative genomic models for analysis of pharmacogenomic studies
用于分析药物基因组研究的综合基因组模型
  • 批准号:
    7698677
  • 财政年份:
    2009
  • 资助金额:
    $ 11.33万
  • 项目类别:
Biostatistics & Bioinformatics Shared Resource
生物统计学
  • 批准号:
    10333173
  • 财政年份:
    1998
  • 资助金额:
    $ 11.33万
  • 项目类别:
Biostatistics Core
生物统计学核心
  • 批准号:
    10230146
  • 财政年份:
    1998
  • 资助金额:
    $ 11.33万
  • 项目类别:
Core 004 (377) Cancer Informatics
核心 004 (377) 癌症信息学
  • 批准号:
    10230147
  • 财政年份:
    1998
  • 资助金额:
    $ 11.33万
  • 项目类别:

相似海外基金

Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
  • 批准号:
    9975367
  • 财政年份:
    2020
  • 资助金额:
    $ 11.33万
  • 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
  • 批准号:
    16K11932
  • 财政年份:
    2016
  • 资助金额:
    $ 11.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
  • 批准号:
    19591274
  • 财政年份:
    2007
  • 资助金额:
    $ 11.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
  • 批准号:
    6346309
  • 财政年份:
    2000
  • 资助金额:
    $ 11.33万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    2720213
  • 财政年份:
    1999
  • 资助金额:
    $ 11.33万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    6513197
  • 财政年份:
    1999
  • 资助金额:
    $ 11.33万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    7101017
  • 财政年份:
    1999
  • 资助金额:
    $ 11.33万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    6894842
  • 财政年份:
    1999
  • 资助金额:
    $ 11.33万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    2885074
  • 财政年份:
    1999
  • 资助金额:
    $ 11.33万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    6174221
  • 财政年份:
    1999
  • 资助金额:
    $ 11.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了