Radiolysis, Photolysis, Sonolysis and Sonoprotection of Cells

细胞的放射分解、光解、声波分解和声波保护

基本信息

  • 批准号:
    7969753
  • 负责人:
  • 金额:
    $ 15.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Summary of work: Sonodynamic therapy is a promising new modality for cancer treatment based on the synergistic effects of cell killing by a combination of sonosensitizer and ultrasound. Ultrasound can penetrate deeply into tissue and can be focused in a small region of tumor to activate non-toxic molecules (e.g. porphyrins ) thus minimizing undesirable side effects. The experimental evidence suggests that sonosensitization is due to the chemical activation of sonosensitizers inside or in close vicinity of hot collapsing cavitation bubbles to form sensitizer-derived radicals either by direct pyrolysis of the sensitizer at the water-gas interface or due to the reactions of hydrogen atoms and hydroxyl radicals formed by the pyrolysis of water. The free radicals derived from the sonosensitizer (mostly carbon-centered) react with oxygen to form peroxyl and alkoxyl radicals. Unlike OH radicals and H atoms which are formed by pyrolysis inside cavitation bubbles, the reactivity of alkoxyl and peroxyl radicals with organic compounds in biological media is much lower and hence they have a higher probability of reaching critical cellular sites. Our recent studies have shown that the long chain ( C5-C8 ) n-alkyl glucopyranosides completely inhibit ultrasound induced cytolysis .(This protective effect has possible applications in HIFU ( High intensity focused ultrasound ) for tumor treatment and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl ( 5mM ), heptyl ( 3mM ), octyl( 2mM ) n-alkyl chains protected 100 % of HL-60 cells in vitro from 1.057 MHz ultrasound induced cytolysis under a range of conditions which resulted in 35% to 100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-D-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles(1). The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkylglucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles , the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. Our recent measurements of the hydrogen peroxide yields at 614 kHz and 1.057 MHz from oxygen-saturated solutions of long chain ( hexyl , octyl ) glucopyranosides compared with methyl-beta-D-glucopyranoside are consistent with the proposed mechanism of sonoprotection. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular membranes by peroxyl and/or alkoxyl radicals. The effect of ultrasound frequency (from 47 kHz to 1 MHz ) on the ability of a homologous series of n-alkylglucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. Comparisons of the protective ability of this series of n-alkylglucopyranosides with our earlier studies of their accumulation at the gas/solution interface of cavitation bubbles show that the ability of these surfactants to accumulate at this gas/solution interface is governed by the dynamic absorption properties and not the equilibrium absorption properties of these surfactants(1). Therapeutic applications of ultrasound to drug activation, apoptosis induction, gene transfer and changes of gene expression were reviewed (4). The ultrasound-induced cytolysis of human leukemia (HL-60) cells is enhanced in the presence of micron-sized alumina particles (3) . This effect is due to an increase of acoustic cavitation activity resulting in a greater amount of sonochemical activity as measured by an increase in the hydroxyl radical yield. Influence of changing Pulse Repetition Frequency on the Chemical and Biological Effects induced by Low Intensity Ultrasound in-vitro (2)(collaboration with T. Kondo et al.) . The influence of changing the pulse repetition frequency (PRF) of 1 MHz ultrasound from 0.5 to 100 Hz on the chemical and biological effects of low intensity ultrasound was studied (2). A significant effect of PRF on OH radical formation, cell killing of U 937 cells and of apoptosis induction was observed. The lowest free radical formation and cell killing and the highest cell viability were found at 5 Hz (100 millisecond pulse duration.) In contrast, no correlation was found between sucrose hydrolysis (a reaction that does not occur at normal temperature and pressure) and PRF. To our knowledge this is the first report devoted to the impact of low PRF at low intensities on ultrasound-induced chemical and biological effects and the mechanisms involved. This study has introduced the role of ultrasound streaming (convection) and explored its importance in comparison to standing waves. Modulation control over ultrasound-mediated gene delivery. Evaluating the importance of standing waves ( with T. Kondo et al. ) Low modulation frequencies from 0.5 to 100 Hz have been shown to alter the characteristics of the ultrasound field producing solution agitation ( less than 5 Hz: region of ultrasound streaming prevalence ) or stagnancy (  5 Hz; region of standing waves establishment . In this study, the same conditions were used to depict the changes in exogoneous DNA delivery in these regions. The luciferase expression data revealed that lower modulations were more capable of enhancing delivery at the expense of viability. On the contrary, the viability was conserved at higher modulations while delivery was found to be null. Cavitational activity and acoustic streaming were the effectors beyond the observed pattern and delivery enhancement was shown to be mediated mainly through sonoporation. To, promote transfection, the addition of calcium ions or of an echo contrast agent ( Levovist ) was proposed. Depending on the mechanism involved in each approach , differential enhancement was observed in both regions and at the interim zone (5 Hz). In both cases, the enhancement in the standing waves was significant reaching 16.0 and 3.3 folds, respectively. Therefore, it was concluded that although the establishment of standing waves is not the only prerequisite for high transfection rates, yet it is a key element in optimization when other factors such as proximity and cavitation are considered. 1. Sostaric, J.Z., Miyoshi,N., Cheng J.Y.& Riesz,P. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation. J. of Physical Chemistry B 112, 12703-12709, (2008) 2. Buldakov, M.A., Hassan, M.A., Zhao, Q.L., Feril, L.B., Kudo, N., Kondo, T., Litvyakov, N.V., Bolshakov, M.A., Rostov, V.V., Cherdyntseva, N.V. and Riesz, P. Influence of changing pulse repetition frequency on chemical and biological effects induced by low intensity ultrasound in-vivo. Ultrasonics Sonochemistry 16, 392-397 (2009) 3. Miyoshi, N., Tuziuti, T., Yasui K., Iida, Y., Shimizu, N., Riesz,P., & J.Z. Sostaric. Ultrasound-induced cytolysis of cancer cells is enhanced in the presence of micron-sized alumina particles. Ultrasonics Sonochemistry 15, 881-890 (2008) 4. Yoshida,T., Kondo, T., Ogawa, R., Zhao, Q., Hassan, M., Watanabe, A., Takasaki, I., Tabuchi, Y., Shoji, M., Kudo, N., Feril, L., Tachibana, K., Buldakov, M., Honda, T., Tsukada, K.& Riesz, P., Molecular therapy by ultrasound. The mechanism [summary truncated at 7800 characters]
工作概述:基于声敏剂与超声联合杀伤细胞的协同效应,声动力治疗是一种很有前景的癌症治疗新方式。超声波可以深入组织,并可以聚焦在肿瘤的一个小区域,以激活无毒分子(如卟啉),从而最大限度地减少不良的副作用。实验证据表明,声敏化是由于在热坍缩空化泡内部或附近的声敏化剂被化学激活,通过在水气界面直接热解敏化剂或通过水的热解形成氢原子和羟基自由基的反应而形成敏化剂衍生自由基。来自声敏剂的自由基(主要以碳为中心)与氧反应形成过氧基和烷氧基自由基。与在空化泡内通过热解形成的OH自由基和H原子不同,烷氧基和过氧基自由基在生物介质中与有机化合物的反应活性要低得多,因此它们到达细胞关键部位的可能性更高。我们最近的研究表明,长链(C5-C8) n-烷基葡萄糖吡喃苷完全抑制超声诱导的细胞溶解。这种保护作用可能应用于HIFU(高强度聚焦超声)的肿瘤治疗和超声辅助药物输送和基因治疗。含有己基(5mM)、庚基(3mM)、辛基(2mM)正烷基链的正烷基吡喃葡萄糖苷在1.057 MHz超声诱导的细胞溶解条件下保护了100%的HL-60细胞,在不含吡喃葡萄糖苷的情况下细胞溶解率为35%至100%。然而,亲水性的甲基- β - d -葡萄糖吡喃苷对细胞没有保护作用。表面活性的n-烷基吡喃葡萄糖苷聚集在空化气泡的气液界面(1)。坍塌空化泡中形成的OH自由基和H原子通过从n-烷基葡萄糖苷的正烷基链或葡萄糖部分提取H原子发生反应。由于空化气泡气液界面处长链表面活性剂的高浓度,烷基链上最初形成的碳自由基转移到葡萄糖部分生成自由基,并与氧反应生成过氧化氢。我们最近在614 kHz和1.057 MHz下对长链(己基、辛基)葡萄糖苷与甲基- β - d -葡萄糖苷在氧饱和溶液中过氧化氢产率的测量结果与提出的声保护机制一致。这一系列事件通过过氧化和/或烷氧基自由基在细胞膜上引发脂质过氧化链式反应来防止声动力细胞的杀伤。研究了超声频率(47 kHz至1 MHz)对同源系列n-烷基葡萄糖吡喃苷保护细胞免受超声诱导的细胞溶解能力的影响。将这一系列的n-烷基吡喃葡萄糖苷的保护能力与我们之前对它们在气穴气泡的气/溶液界面积聚的研究进行比较,表明这些表面活性剂在气/溶液界面积聚的能力是由这些表面活性剂的动态吸收特性而不是这些表面活性剂的平衡吸收特性决定的(1)。综述了超声在药物激活、细胞凋亡诱导、基因转移和基因表达改变等方面的治疗应用(4)。超声波诱导的人白血病(HL-60)细胞溶解在微米级氧化铝颗粒的存在下得到增强(3)。这种效应是由于声空化活性的增加导致更大的声化学活性,通过增加羟基自由基的产量来测量。改变脉冲重复频率对体外低强度超声诱导的化学和生物效应的影响(2)(与T. Kondo等人合作)。研究了将1 MHz超声的脉冲重复频率(PRF)从0.5 Hz改变到100 Hz对低强度超声的化学和生物效应的影响(2)。PRF对u937细胞OH自由基形成、细胞杀伤及诱导凋亡均有显著影响。在5hz(100毫秒脉冲持续时间)下,自由基形成和细胞杀伤最低,细胞活力最高。相反,蔗糖水解(在常温常压下不会发生的反应)和PRF之间没有相关性。据我们所知,这是第一份专门研究低强度低PRF对超声诱导的化学和生物效应及其机制的影响的报告。本研究介绍了超声波流(对流)的作用,并探讨了其与驻波相比的重要性。超声介导基因传递的调节控制。0.5至100 Hz的低调制频率已被证明可以改变超声场的特性,产生溶液搅拌(小于5 Hz:超声流流行区域)或停滞(5 Hz;驻波建立区域)。在这项研究中,我们用同样的条件来描述这些地区的外献法DNA传递的变化。荧光素酶表达数据显示,较低的调制更有能力以牺牲生存能力为代价提高递送。相反,在较高的调制下,生存力是守恒的,而传输被发现为零。空化活性和声流是观察到的模式之外的效应因子,传递增强主要通过声共振介导。为了促进转染,建议添加钙离子或回声造影剂(Levovist)。根据每种方法所涉及的机制,在两个区域和中间区域(5hz)观察到不同的增强。两种情况下,驻波增强均显著,分别达到16.0倍和3.3倍。因此,我们得出结论,虽然驻波的建立不是高转染率的唯一先决条件,但当考虑邻近和空化等其他因素时,它是优化的关键因素。1. Sostaric, J.Z, Miyoshi,N。,程建英&;Riesz,P。正烷基糖苷的动态吸附特性决定了其抑制声空化介导的细胞溶解的能力。[j] .物理化学学报,2001,12(2):444 - 444。Buldakov, m.a., Hassan, m.a., Zhao, Q.L, Feril, l.b., Kudo, N., Kondo, T., Litvyakov, N.V., Bolshakov, m.a., Rostov, v.v., Cherdyntseva, N.V.和Riesz, P.改变脉冲重复频率对体内低强度超声诱导的化学和生物效应的影响。2 .声学与化学学报,2009,32 (1)Miyoshi, N., Tuziuti, T., Yasui K., Iida, Y., Shimizu, N., Riesz,P.。, J.Z. Sostaric。超声波诱导癌细胞的细胞溶解在微米级氧化铝颗粒的存在下得到增强。3 .中国生物医学工程学报,2009,32(2):481 - 481。吉田,T。, Kondo, T., Ogawa, R., Zhao, Q., Hassan, M., Watanabe, A., Takasaki, I., Tabuchi, Y., Shoji, M., Kudo, N., Feril, L.,立花,K., Buldakov, M., Honda, T., Tsukada, K.& Riesz, P.,超声分子治疗。机制[摘要截短为7800个字符]

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasound-induced cytolysis of cancer cells is enhanced in the presence of micron-sized alumina particles.
  • DOI:
    10.1016/j.ultsonch.2007.10.010
  • 发表时间:
    2008-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    N. Miyoshi;T. Tuziuti;K. Yasui;Y. Iida;N. Shimizu;P. Riesz;J. Sostaric
  • 通讯作者:
    N. Miyoshi;T. Tuziuti;K. Yasui;Y. Iida;N. Shimizu;P. Riesz;J. Sostaric
Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER RIESZ其他文献

PETER RIESZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER RIESZ', 18)}}的其他基金

Radiolysis, Photolysis and Sonolysis of Cells
细胞的放射分解、光解和超声波分解
  • 批准号:
    7066864
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of
辐射分解、光解、声波分解和声波防护
  • 批准号:
    7331386
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
5-Aminolevulinic acid-induced oxidative stress on cells by gold nanoparticles.
金纳米颗粒对细胞产生 5-氨基乙酰丙酸诱导的氧化应激。
  • 批准号:
    7966145
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis and Sonolysis of Cells and their
细胞的辐射分解、光解和声分解及其作用
  • 批准号:
    6756260
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis and Sonolysis of Cells and their Constituents
细胞及其成分的放射分解、光分解和声分解
  • 批准号:
    6433346
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of Cells
细胞的放射分解、光解、声波分解和声波保护
  • 批准号:
    7735361
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis & Sonolysis--Cells & Constituents
辐射分解、光解
  • 批准号:
    6558329
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of Cells and their Constitu
细胞及其成分的放射分解、光分解、声分解和声保护
  • 批准号:
    7594761
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of
辐射分解、光解、声波分解和声波防护
  • 批准号:
    7292010
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:
Radiolysis, Photolysis and Sonolysis of Cells and their
细胞的辐射分解、光解和声分解及其作用
  • 批准号:
    6947124
  • 财政年份:
  • 资助金额:
    $ 15.37万
  • 项目类别:

相似海外基金

Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了