Radiolysis, Photolysis, Sonolysis and Sonoprotection of Cells

细胞的放射分解、光解、声波分解和声波保护

基本信息

  • 批准号:
    7735361
  • 负责人:
  • 金额:
    $ 36.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Summary of work: Sonodynamic therapy (8)is a promising new modality for cancer treatment based on the synergistic effects of cell killing by a combination of sonosensitizer and ultrasound. Ultrasound can penetrate deeply into tissue and can be focused in a small region of tumor to activate non-toxic molecules (e.g. porphyrins ) thus minimizing undesirable side effects. The experimental evidence suggests that sonosensitization is due to the chemical activation of sonosensitizers inside or in close vicinity of hot collapsing cavitation bubbles to form sensitizer-derived radicals either by direct pyrolysis of the sensitizer at the water-gas interface or due to the reactions of hydrogen atoms and hydroxyl radicals formed by the pyrolysis of water. The free radicals derived from the sonosensitizer (mostly carbon-centered) react with oxygen to form peroxyl and alkoxyl radicals. Unlike OH radicals and H atoms which are formed by pyrolysis inside cavitation bubbles, the reactivity of alkoxyl and peroxyl radicals with organic compounds in biological media is much lower and hence they have a higher probability of reaching critical cellular sites. Our recent studies have shown that the long chain ( C5-C8 ) n-alkyl glucopyranosides completely inhibit ultrasound induced cytolysis (5). This protective effect has possible applications in HIFU ( High intensity focused ultrasound ) for tumor treatment and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl ( 5mM ), heptyl ( 3mM ), octyl ( 2mM ) n-alkyl chains protected 100 % of HL-60 cells in vitro from 1.057 MHz ultrasound induced cytolysis under a range of conditions which resulted in 35% to 100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-D-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkylglucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles , the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. Our recent measurements (2) of the hydrogen peroxide yields at 614 kHz and 1.057 MHz from oxygen-saturated solutions of long chain ( hexyl , octyl ) glucopyranosides compared with methyl-beta-D-glucopyranoside are consistent with the proposed mechanism of sonoprotection. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular membranes by peroxyl and/or alkoxyl radicals. The effect of ultrasound frequency (from 47 kHz to 1 MHz ) on the ability of a homologous series of n-alkylglucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. Comparisons of the protective ability of this series of n-alkylglucopyranosides with our earlier studies of their accumulation at the gas/solution interface of cavitation bubbles show that the ability of these surfactants to accumulate at this gas/solution interface is governed by the dynamic absorption properties and not the equilibrium absorption properties of these surfactants. Therapeutic applications of ultrasound to drug activation, apoptosis induction, gene transfer and changes of gene expression were reviewed (3). The medical applications of gold nanoparticles for drug delivery have recently been demonstrated. We have found that citrate capped gold nanoparticles with a size of more than 15 nm diameter ( at 36 micromol or less ) did not affect the viability of human cells. The oxidative stress induced by 5-aminolevulinic acid hydrochloride ( 5-ALA ) or aminolevulinic acid methyl ester hydrochloride (5-ALA-Me) in the absence of light cause necrotic cell killing. The combination of 17 nm sized gold nanoparticles and the 5-ALA derivatives were more effective in cell killing than the 5-ALA derivatives alone for several human cell lines [breast cancer cells (MCF-7),myeloid leukemia cells (HL-60), hepatocellular liver carcinoma cells (HepG2) and normal human fibroblast cells (1522). The damaging effects were protected by superoxide dismutase and catalase.The morphological appearance analysed by electron microscopy showed that the damage by the combination of 5-ALA and gold nanoparticles was almost the same as for the damage induced by 5-ALA derivatives alone. In both cases the uptake of the gold nanoparticles into the cells was shown. The influence of changing Pulse Repetition Frequency on the Chemical and Biological Effects induced by Low Intensity Ultrasound in-vitro was studied. (collaboration with T. Kondo et al.) 1. Sostaric J., Miyoshi N., Cheng J.Y., Riesz P. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation. J.of Physical Chemistry B (in press) 2. Miyoshi N., Tuziuti, T. Yasui K., Iida Y., Shimizu N., Riesz P., & Sostaric J.Z.Ultrasound-induced cytolysis of cancer cells is enhanced in the presence of micron-sized alumina particles. Ultrasonics Sonochemistry 15, 881-890, 2008 3. Yoshida,T., Kondo, T., Ogawa, R., Zhao, Q., Hassan, M., Watanabe, A., Takasaki, I., Tabuchi, Y., Shoji, M., Kudo, N., Feril, L., Tachibana, K., Buldakov, M., Honda, T., Tsukada, K.& Riesz, P., Molecular therapy by ultrasound. The mechanism of drug activation, apoptosis induction, gene transfer, and change of gene expressions. Thermal Medicine ( Japan), 23,113-122, 2007 4. Cheng, J.Y. & Riesz, P., Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells. Ultrasonics Sonochemistry 14, 667-671 (2007) 5. Sostaric, J.Z., Miyoshi, N., Riesz, P., De Graff, W.G. & Mitchell, J.B., n-Alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis. Free Radical Biology & Medicine 39, 1539-1548, (2005) 6. Feril, L.B., Tsuda, Y., Kondo, T., Zhao, Q.L., Ogawa, R., Cui, Z.G., Tsukada, K. & Riesz P., Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2'-azobis(2-amidinopropane) dihydrochloride. Cancer Science 95, 181-185 (2004). 7. Feril, L., Kondo, T., Takaya, K. & Riesz, P., Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. International Journal of Radiation Biology 80, 165-175 (2004). 8. Rosenthal, I., Sostaric, J. & Riesz, P., Sonodynamic therapy - a review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry 11, 349-363 (2004). 9. Rosenthal, I., Sostaric, J. & Riesz, P., Enlightened sonochemistry. Research on Chemical Intermediates 30, 685-701 (2004).
工作总结:声动力学疗法 (8) 是一种有前途的癌症治疗新方式,基于声敏剂和超声波组合杀伤细胞的协同效应。超声波可以深入渗透到组织中,并可以聚焦在肿瘤的小区域,以激活无毒分子(例如卟啉),从而最大限度地减少不良副作用。实验证据表明,声敏化是由于热塌陷空化气泡内部或附近的声敏剂的化学活化,通过敏化剂在水-气界面的直接热解或由于水热解形成的氢原子和羟基自由基的反应而形成敏化剂衍生的自由基。源自声敏剂的自由基(大部分以碳为中心)与氧反应形成过氧自由基和烷氧基自由基。与空化气泡内热解形成的 OH 自由基和 H 原子不同,烷氧基和过氧自由基与生物介质中有机化合物的反应性要低得多,因此它们更有可能到达关键细胞位点。我们最近的研究表明,长链 (C5-C8) n-烷基吡喃葡萄糖苷完全抑制超声诱导的细胞溶解 (5)。这种保护作用可能应用于肿瘤治疗的 HIFU(高强度聚焦超声)以及超声辅助药物输送和基因治疗。具有己基 (5mM)、庚基 (3mM)、辛基 (2mM) 正烷基链的正烷基吡喃葡萄糖苷可在体外保护 100% 的 HL-60 细胞免受 1.057 MHz 超声诱导的细胞溶解作用,在一系列条件下,在没有吡喃葡萄糖苷的情况下导致 35% 至 100% 的细胞溶解。然而,亲水性的甲基-β-D-吡喃葡萄糖苷并不能保护细胞。 表面活性的正烷基吡喃葡萄糖苷在空化气泡的气液界面处积聚。 OH自由基和空化气泡中形成的H原子通过从正烷基吡喃葡萄糖苷的正烷基链或葡萄糖部分夺取H原子而发生反应。由于空化气泡的气液界面处长链表面活性剂的浓度较高,烷基链上最初形成的碳自由基转移到葡萄糖部分,产生自由基,自由基与氧反应,导致过氧化氢的形成。我们最近对长链(己基、辛基)吡喃葡萄糖苷的氧饱和溶液在 614 kHz 和 1.057 MHz 下的过氧化氢产量的测量 (2) 与甲基-β-D-吡喃葡萄糖苷相比,与所提出的声波保护机制一致。这一系列事件通过过氧自由基和/或烷氧基自由基在细胞膜中引发脂质过氧化链反应来防止声动力学细胞杀伤。研究了超声频率(从 47 kHz 到 1 MHz)对同源系列正烷基吡喃葡萄糖苷保护细胞免受超声诱导的细胞溶解的能力的影响。将这一系列正烷基吡喃葡萄糖苷的保护能力与我们早期对其在空化气泡的气体/溶液界面上的积累的研究进行比较表明,这些表面活性剂在该气体/溶液界面上的积累能力是由动态吸收特性决定的,而不是这些表面活性剂的平衡吸收特性。对超声在药物激活、细胞凋亡诱导、基因转移和基因表达变化方面的治疗应用进行了综述(3)。金纳米颗粒在药物输送方面的医学应用最近已得到证实。我们发现,直径超过15纳米(36微摩尔以下)的柠檬酸盐封端的金纳米粒子不会影响人体细胞的活力。 5-氨基乙酰丙酸盐酸盐(5-ALA)或氨基乙酰丙酸甲酯盐酸盐(5-ALA-Me)在无光情况下诱导的氧化应激导致坏死细胞死亡。对于多种人类细胞系[乳腺癌细胞(MCF-7)、髓性白血病细胞(HL-60)、肝细胞肝癌细胞(HepG2)和正常人成纤维细胞(1522),17 nm大小的金纳米颗粒和5-ALA衍生物的组合比单独使用5-ALA衍生物更有效地杀伤细胞。超氧化物歧化酶和过氧化氢酶对损伤作用有保护作用。电镜形态分析表明,5-ALA与纳米金复合物的损伤与单独使用5-ALA衍生物引起的损伤几乎相同。在这两种情况下,都显示出金纳米颗粒被细胞吸收。研究了改变脉冲重复频率对体外低强度超声引起的化学和生物效应的影响。 (与 T. Kondo 等人合作) 1. Sostaric J.、Miyoshi N.、Cheng J.Y.、Riesz P。正烷基吡喃葡萄糖苷的动态吸附特性决定了它们抑制声空化介导的细胞溶解的能力。 J.of Physical Chemistry B(待出版) 2. Miyoshi N.、Tuziuti、T. Yasui K.、Iida Y.、Shimizu N.、Riesz P. 和 Sostaric J.Z. 在微米级氧化铝颗粒的存在下,超声波诱导的癌细胞细胞溶解作用增强。超声波声化学 15, 881-890, 2008 3. Yoshida,T.、Kondo, T.、Okawa, R.、Zhao, Q.、Hassan, M.、Watanabe, A.、Takasaki, I.、Tabuchi, Y.、Shoji, M.、Kudo, N.、Feril, L.、Tachibana, K.、Buldakov, M.、Honda, T., Tsukada, K.& Riesz, P.,超声分子治疗。药物激活、细胞凋亡诱导、基因转移和基因表达变化的机制。热医学(日本),23,113-122,2007 4. Cheng, J.Y. & Riesz, P.,长链正烷基吡喃葡萄糖苷对超声诱导的 HL-60 细胞细胞溶解的保护作用机制。 Ultrasonics Sonochemistry 14, 667-671 (2007) 5. Sostaric, J.Z.、Miyoshi, N.、Riesz, P.、De Graff, W.G. 和 Mitchell, J.B.,正烷基吡喃葡萄糖苷完全抑制超声诱导的细胞溶解。自由基生物学与医学 39, 1539-1548, (2005) 6. Feril, L.B.、Tsuda, Y.、Kondo, T.、Zhao, Q.L.、Okawa, R.、Cui, Z.G.、Tsukada, K. 和 Riesz P.,超声诱导的单核 U937 细胞杀伤增强 2,2'-偶氮二(2-脒基丙烷)二盐酸盐。癌症科学 95, 181-185 (2004)。 7. Feril, L.、Kondo, T.、Takaya, K. 和 Riesz, P.,低渗介质增强超声诱导的细胞凋亡和细胞裂解。国际放射生物学杂志 80, 165-175 (2004)。 8. Rosenthal, I.、Sostaric, J. 和 Riesz, P.,声动力疗法 - 药物和超声协同作用的综述。超声波声化学 11, 349-363 (2004)。 9. Rosenthal, I.、Sostaric, J. 和 Riesz, P.,Enlightened 声化学。化学中间体研究 30, 685-701 (2004)。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A comparative sonochemical reaction that is independent of the intensity of ultrasound and the geometry of the exposure apparatus.
一种独立于超声波强度和曝光设备几何形状的比较声化学反应。
  • DOI:
    10.1016/j.ultsonch.2008.03.007
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Sostaric,JoeZ
  • 通讯作者:
    Sostaric,JoeZ
Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells.
长链正烷基吡喃葡萄糖苷对超声诱导的 HL-60 细胞细胞溶解的保护作用机制。
  • DOI:
    10.1016/j.ultsonch.2006.10.011
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Cheng,JasonY;Riesz,Peter
  • 通讯作者:
    Riesz,Peter
n-Alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis.
正烷基吡喃葡萄糖苷完全抑制超声诱导的细胞溶解。
  • DOI:
    10.1016/j.freeradbiomed.2005.07.020
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Sostaric,JoeZ;Miyoshi,Norio;Riesz,Peter;DeGraff,WilliamG;Mitchell,JamesB
  • 通讯作者:
    Mitchell,JamesB
A chemical sensor that can detect the frequency of ultrasound.
一种可以检测超声波频率的化学传感器。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER RIESZ其他文献

PETER RIESZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER RIESZ', 18)}}的其他基金

Radiolysis, Photolysis and Sonolysis of Cells
细胞的放射分解、光解和超声波分解
  • 批准号:
    7066864
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of
辐射分解、光解、声波分解和声波防护
  • 批准号:
    7331386
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
5-Aminolevulinic acid-induced oxidative stress on cells by gold nanoparticles.
金纳米颗粒对细胞产生 5-氨基乙酰丙酸诱导的氧化应激。
  • 批准号:
    7966145
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis and Sonolysis of Cells and their
细胞的辐射分解、光解和声分解及其作用
  • 批准号:
    6756260
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis and Sonolysis of Cells and their Constituents
细胞及其成分的放射分解、光分解和声分解
  • 批准号:
    6433346
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of Cells
细胞的放射分解、光解、声波分解和声波保护
  • 批准号:
    7969753
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis & Sonolysis--Cells & Constituents
辐射分解、光解
  • 批准号:
    6558329
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of Cells and their Constitu
细胞及其成分的放射分解、光分解、声分解和声保护
  • 批准号:
    7594761
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis and Sonolysis of Cells and their
细胞的辐射分解、光解和声分解及其作用
  • 批准号:
    6947124
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:
Radiolysis, Photolysis, Sonolysis and Sonoprotection of
辐射分解、光解、声波分解和声波防护
  • 批准号:
    7292010
  • 财政年份:
  • 资助金额:
    $ 36.47万
  • 项目类别:

相似海外基金

Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了