A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
基本信息
- 批准号:8142075
- 负责人:
- 金额:$ 36.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAging-Related ProcessAngerArtsAutistic DisorderBehaviorChild AbuseClassificationCodeCognitionCognitiveComplexComputer SimulationComputer Vision SystemsConsciousCuesDepressed moodDimensionsDuchenne muscular dystrophyEmotionsEvolutionEye diseasesFaceFace ProcessingFacial ExpressionFacial MusclesFrightGoalsHappinessHumanHuntington DiseaseImageIndividualLeadMovementMuscleNeuronsOral cavityPerceptionPlayPositioning AttributePrimatesProcessProtocols documentationResearchResolutionRoleSchizophreniaShapesSocial InteractionSystemTimeTo specifyVisualVisual impairmentVisual system structurebasecognitive systemcomputer human interactioncomputer studiescourtdesignhuman subjectmillisecondpsychologicpublic health relevanceresearch studyshowing emotionvisual processvisual processing
项目摘要
DESCRIPTION (provided by applicant): Past research has been very successful in defining how facial expressions of emotion are produced, including which muscle movements create the most commonly seen expressions. These facial expressions of emotion are then interpreted by our visual system. Yet, little is known about how these facial expressions are recognized. The overarching goal of this proposal is to define the form and dimensions of the cognitive (computational) space used in this visual recognition. In particular, this proposal will study the following three hypotheses: Although facial expressions are produced by a complex set of muscle movements, expressions are generally easily identified at different spatial and time resolutions. However, it is not know what these limits are. Our first hypothesis (H1) is that recognition of facial expressions of emotion can be achieved at low resolutions and after short exposure times. In Aim 1, we define experiments to determine how many pixels and milliseconds (ms) are needed to successfully identify different emotions. The fact that expressions of emotion can be recognized quickly at low resolution indicates that simple features robust to image manipulation are employed. Our second hypothesis (H2) is that the recognition of facial expressions of emotion is partially accomplished by an analysis of configural features. Configural cues are known to play an important role in other face recognition tasks, but their role in the processing of expressions of emotion is not yet well understood. Aim 2 will identify a number of these configural cues. We will use real images of faces, manipulated versions of these face images, and schematic drawings. It is also known that shape features play a role in facial expressions (e.g., the curvature of the mouth in happiness). In Aim 3, we define a shape-based computational model. Our hypothesis (H3) is that the configural and shape features are defined as deviations from a mean (or norm) face as opposed to being described as a set of independent exemplars (Gnostic neurons). The importance of this computational space is not only to further justify the results of the previous aims, but to make new predictions that can be verified with additional experiments with human subjects.
PUBLIC HEALTH RELEVANCE: Understanding how facial expressions of emotion are processed by our cognitive system will be important for studies of abnormal face and emotion visual processing in schizophrenia, autism and Huntington's disease. Also, abused children are more acute at recognizing emotions, suggesting a higher degree of expertise to some image features. Identifying which features are used by the cognitive system will help develop protocols for reducing their unwanted effects. Understanding the limits in spatial and time resolution will also be important for studies of low vision (acuity), which are typical problems in several eye diseases and in the normal process of aging.
描述(由申请人提供):过去的研究在定义如何产生情感表达方面非常成功,包括哪些肌肉运动会创造出最常见的表情。然后,我们的视觉系统解释了这些情感的面部表情。然而,对于如何认识到这些面部表情知之甚少。该提案的总体目标是定义此视觉识别中使用的认知(计算)空间的形式和尺寸。特别是,该建议将研究以下三个假设:尽管面部表情是由一组复杂的肌肉运动产生的,但通常在不同的空间和时间分辨率下很容易识别表达。但是,不知道这些限制是什么。我们的第一个假设(H1)是,在低分辨率和短期暴露时间后,可以实现对情绪表达的认识。在AIM 1中,我们定义了实验,以确定需要成功识别不同情绪的多少像素和毫秒(MS)。可以在低分辨率下快速识别情绪表达的事实表明,采用了简单的功能可靠地进行图像操纵。我们的第二个假设(H2)是,通过对构型特征的分析,对面部表情的识别部分是通过部分完成的。众所周知,配置提示在其他面部识别任务中起着重要作用,但是它们在情感表达的处理中的作用尚不清楚。 AIM 2将确定许多这些配置提示。我们将使用面部的真实图像,这些面部图像的操纵版本和示意图。还众所周知,形状特征在面部表情中起作用(例如,在幸福中的嘴巴曲率)。在AIM 3中,我们定义了一个基于形状的计算模型。我们的假设(H3)是,构型和形状特征被定义为与平均(或规范)面的偏差,而不是被描述为一组独立的示例(Gnostic神经元)。该计算空间的重要性不仅是为了进一步证明先前目标的结果是合理的,而且是通过对人类受试者进行的其他实验来验证的新预测。
公共卫生相关性:了解我们的认知系统如何处理情感的面部表情对于精神分裂,自闭症和亨廷顿氏病异常的面部和情感视觉处理的研究很重要。此外,受虐待的孩子在识别情绪方面更加敏锐,这表明某些图像特征具有更高的专业知识。确定认知系统使用的功能将有助于制定协议以减少其不必要的效果。了解空间和时间分辨率的限制对于低视力(敏锐度)的研究也很重要,这是几种眼部疾病和正常衰老过程中的典型问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleix M Martinez其他文献
Aleix M Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleix M Martinez', 18)}}的其他基金
Computational Methods for the Study of American Sign Language Nonmanuals Using Very Large Databases
使用大型数据库研究美国手语非手册的计算方法
- 批准号:
9199411 - 财政年份:2016
- 资助金额:
$ 36.6万 - 项目类别:
Computational Methods for the Study of American Sign Language Nonmanuals Using Very Large Databases
使用大型数据库研究美国手语非手册的计算方法
- 批准号:
9054574 - 财政年份:2016
- 资助金额:
$ 36.6万 - 项目类别:
Computational Methods for the Study of American Sign Language Nonmanuals Using Very Large Databases
使用大型数据库研究美国手语非手册的计算方法
- 批准号:
9841303 - 财政年份:2016
- 资助金额:
$ 36.6万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8494053 - 财政年份:2010
- 资助金额:
$ 36.6万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
7946918 - 财政年份:2010
- 资助金额:
$ 36.6万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8266468 - 财政年份:2010
- 资助金额:
$ 36.6万 - 项目类别:
Computational Methods for Analysis of Mouth Shapes in Sign Languages
手语嘴形分析的计算方法
- 批准号:
8109271 - 财政年份:2010
- 资助金额:
$ 36.6万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8669977 - 财政年份:2010
- 资助金额:
$ 36.6万 - 项目类别:
Computational Methods for Analysis of Mouth Shapes in Sign Languages
手语嘴形分析的计算方法
- 批准号:
8101448 - 财政年份:2010
- 资助金额:
$ 36.6万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
- 批准号:
10701309 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别: