Computational Methods for the Study of American Sign Language Nonmanuals Using Very Large Databases
使用大型数据库研究美国手语非手册的计算方法
基本信息
- 批准号:9841303
- 负责人:
- 金额:$ 31.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcademic achievementAccess to InformationAddressAgreementAlgorithmsAmerican Sign LanguageArticulationBehavioralChildCodeCommunicationComputational algorithmComputer Vision SystemsComputer softwareComputing MethodologiesDatabasesDetectionDevicesEmotionsExcisionFaceFacial ExpressionFacial MusclesGoalsHandHeadHearingHumanImageIndividualInterventionLifeLinguisticsLogicMachine LearningManualsMethodsMovementParentsPattern RecognitionProductionResearchResearch PersonnelScienceSemanticsSeriesShapesSign LanguageSignal TransductionSpecific qualifier valueSpeechStructureSystemTeacher Professional DevelopmentTechnologyTestingTimeVisualVisual system structurebasebody positioncomparativecomputerized toolsdeafdeafnessdesignexperienceexperimental studyface perceptioninnovationinstructorinterestmachine learning algorithmpreventpublic health relevancereconstructionshowing emotionsyntaxtool
项目摘要
DESCRIPTION (provided by applicant): American Sign Language (ASL) grammar is specified by the manual sign (the hands) and by the nonmanual components, which include the face. Our general hypothesis is that nonmanual facial articulations perform significant semantic and syntactic functions by means of a more extensive set of facial expressions than that seen in other communicative systems (e.g., speech and emotion). This proposal will systematically study this hypothesis. Specifically, we will study the following three hypotheses needed to properly answer the general hypothesis stated above: First, we hypothesize (H1) that the facial muscles involved in the production of clause-level grammatical facial expressions in ASL and/or their intensity of activation are more extensive than those seen in speech and emotion. Second, we hypothesize (H2) that the temporal structure of these facial configurations are more extensive than those seen in speech and emotion. Finally, we hypothesize (H3) that eliminating these ASL nonmanual makers from the original videos, drastically reduces the chances of correctly identifying the clause type of the signed sentence. To test these three hypotheses, we define a highly innovative approach based on the design of computational tools for the analysis of nonmanuals in signing. In particular, we will examine the following three specific aims. In Aim 1, we will build a series of computer algorithms that allow us to automatically (i.e., without the need of any human intervention) detect the face, its facial features as well as the automatic detection of the movements of the facial muscles and their intensity of activation. These tools will be integrated into ELAN, a standard software used for linguistic analysis. These tools will then be used to test six specific hypotheses to successfully study H1. In Aim 2, we define computer vision and machine learning algorithms to identify the temporal structure of ASL facial configurations and examine how these compare to those seen in speech and emotion. We will study six specific hypotheses to successfully address H2. Alternative hypotheses are defined in both aims. Finally, in Aim 3 we define algorithms to automatically modify the original videos of facial expression in ASL to eliminate the identified nonmanual markers. Native users of ASL will complete behavioral experiments to examine H3 and test potential alternative hypotheses. Comparative analysis with non-signer controls will also be completed. These studies will thus further validate H1 and H2. We provide evidence of our ability to successfully complete the tasks in each of these aims. These aims address a critical need; at present, the study of nonmanuals must be carried out by hand. To be able to draw conclusive results, it is necessary to study thousands of videos. The proposed computational approach supposes at least a 50-fold reduction in time compared to methods done by hand.
描述(由申请人提供):美国手语(ASL)语法由手动符号(手)和非手动组件(包括面部)指定。我们的一般假设是,非手动面部发音通过比其他交际系统中更广泛的面部表情集来执行重要的语义和句法功能(例如,言语和情感)。本文将系统地研究这一假说。具体来说,我们将研究以下三个假设,以正确回答上述一般假设:首先,我们假设(H1),在美国手语的小句水平的语法面部表情和/或其激活强度的生产涉及的面部肌肉比在言语和情感中看到的更广泛。其次,我们假设(H2),这些面部结构的时间结构比言语和情感中看到的更广泛。最后,我们假设(H3),从原始视频中删除这些ASL非手动标记,大大降低了正确识别签名句子的子句类型的机会。为了验证这三个假设,我们定义了一个高度创新的方法,基于设计的计算工具的分析非手册签署。我们将特别审查以下三个具体目标。在目标1中,我们将构建一系列计算机算法,使我们能够自动(即,不需要任何人为干预)检测面部、其面部特征以及面部肌肉的运动及其激活强度的自动检测。这些工具将被纳入用于语言分析的标准软件ELAN。然后,这些工具将用于测试六个特定的假设,以成功地研究H1。在目标2中,我们定义了计算机视觉和机器学习算法来识别ASL面部配置的时间结构,并研究这些与语音和情感中所见的时间结构的比较。我们将研究六个具体的假设,以成功地解决H2。在这两个目标中定义了备选假设。最后,在目标3中,我们定义了自动修改ASL中面部表情的原始视频以消除所识别的非手动标记的算法。ASL的本地用户将完成行为实验,以检查H3和测试潜在的替代假设。还将完成与非签名者控制的比较分析。因此,这些研究将进一步验证H1和H2。我们提供证据证明我们有能力成功完成这些目标中的每一项任务。这些目标解决了一个关键的需求;目前,非手册的研究必须手工进行。为了能够得出结论性的结果,有必要研究成千上万的视频。所提出的计算方法假设至少减少了50倍的时间相比,手工完成的方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Psycholinguistic mechanisms of classifier processing in sign language.
- DOI:10.1037/xlm0000958
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Krebs J;Malaia E;Wilbur RB;Roehm D
- 通讯作者:Roehm D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleix M Martinez其他文献
Aleix M Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleix M Martinez', 18)}}的其他基金
Computational Methods for the Study of American Sign Language Nonmanuals Using Very Large Databases
使用大型数据库研究美国手语非手册的计算方法
- 批准号:
9199411 - 财政年份:2016
- 资助金额:
$ 31.78万 - 项目类别:
Computational Methods for the Study of American Sign Language Nonmanuals Using Very Large Databases
使用大型数据库研究美国手语非手册的计算方法
- 批准号:
9054574 - 财政年份:2016
- 资助金额:
$ 31.78万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8142075 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8494053 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
7946918 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
Computational Methods for Analysis of Mouth Shapes in Sign Languages
手语嘴形分析的计算方法
- 批准号:
8109271 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8266468 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
A Study of the Computational Space of Facial Expressions of Emotion
面部表情情感的计算空间研究
- 批准号:
8669977 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
Computational Methods for Analysis of Mouth Shapes in Sign Languages
手语嘴形分析的计算方法
- 批准号:
8101448 - 财政年份:2010
- 资助金额:
$ 31.78万 - 项目类别:
相似海外基金
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
- 批准号:
24K14615 - 财政年份:2024
- 资助金额:
$ 31.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Roadmap to Success in STEM: Support for Mental Well-being, Academic Achievement, and Professional Development
STEM 成功路线图:支持心理健康、学术成就和专业发展
- 批准号:
2325544 - 财政年份:2023
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
Online Learning in Undergraduate Nursing Education: Screening for E-learning Readiness as a Predictor of Engagement and Academic Achievement
本科护理教育中的在线学习:筛选电子学习准备情况作为参与度和学术成就的预测指标
- 批准号:
467194 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Studentship Programs
Early Academic Achievement and Intervention Response: Role of Executive Function
早期学业成就和干预反应:执行功能的作用
- 批准号:
10329261 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
The Influence of School Start Time on Sleep, Academic Achievement, and Behavioral Outcomes in Adolescents
上学时间对青少年睡眠、学业成绩和行为结果的影响
- 批准号:
10113209 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Scholarships To Improve Undergraduate Students' Academic Achievement, Retention, and Career Success in Computer Science and Artificial Intelligence
奖学金旨在提高本科生在计算机科学和人工智能领域的学业成绩、保留率和职业成功
- 批准号:
2030581 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
Towards a holistic model of academic achievement in autism
建立自闭症学术成就的整体模型
- 批准号:
2619093 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Studentship
Understanding the Impact of The COVID-19 Pandemic on Academic Achievement in Ontario- A Population-Based Cohort Study
了解 COVID-19 大流行对安大略省学业成绩的影响 - 基于人群的队列研究
- 批准号:
450619 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Operating Grants
The Influence of School Start Time on Sleep, Academic Achievement, and Behavioral Outcomes in Adolescents
上学时间对青少年睡眠、学业成绩和行为结果的影响
- 批准号:
10321958 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
A study on the theory of academic achievement in physical education: Comparison between Japan and America
体育学业成绩理论研究:日美比较
- 批准号:
20K13872 - 财政年份:2020
- 资助金额:
$ 31.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




