Discovery of SAM domain functions

SAM域功能的发现

基本信息

项目摘要

DESCRIPTION (provided by applicant): A salient feature of eukaryotic proteins is their modular construction. Proteins can gain new functionalities by incorporating new modules. The study of domain composition may suggest hypotheses regarding a protein function(s), and thus it has become desirable to define the function of individual protein domain modules. This is particularly important for SAM (sterile alpha motif) domains, which are among the most common protein modules found in eukaryotic cells. In contrast to many other well-characterized protein-protein interaction modules, SAM domains have considerably more diverse interaction modes. Under the hypothesis that learning module functions can provide biological insights, we propose to assign functions to thousands of uncharacterized SAM domains by a combination of bioinformatic and proteomic techniques. Aim 1: Expand our predictions of polymeric and non-polymeric SAM domains. Our first publication partly addressed Aim 1. We computationally identified those SAMs likely to be polymeric by calculating their interaction energy when threaded onto known polymeric structures. We found 694 likely polymers, including SAM domains from the proteins Lethal Malignant Brain Tumor, Bicaudal-C, Liprin-beta, Adenylate Cyclase, and Atherin. About half of all known SAM domains could not be evaluated, however, because of low homology to known SAM structures. As part of our continuing studies, we will expand the number of predictions by including a large number of recently determined structures. Aim 2: Experimentally validate and characterize predicted SAM polymers. We will first test whether the predicted polymers actually form polymers by examining the purified SAM domains by EM. We then will further investigate their function by creating mutants that block polymerization to see whether their known functions are interrupted. Aim 3: Assign functions to non-polymerizing SAM domains. A common alternative function is hetero- oligomerization with other SAM domains. Thus, for those SAMs that don't polymerize we will investigate whether they bind to one another instead, thereby developing a SAM domain interactome. This will be accomplished by means of yeast 2-hybrid screens. Another class of SAM domains bind to nucleic acids. We will identify these computationally, by looking for nucleic acid binding site features. The methodology outlined here to investigate global SAM domain functions is likely to be widely applicable to other domain types found in a variety of other proteins. Further, the discovery new SAM functions may help identify new drug targets for different diseases.
DESCRIPTION (provided by applicant): A salient feature of eukaryotic proteins is their modular construction. Proteins can gain new functionalities by incorporating new modules. The study of domain composition may suggest hypotheses regarding a protein function(s), and thus it has become desirable to define the function of individual protein domain modules. This is particularly important for SAM (sterile alpha motif) domains, which are among the most common protein modules found in eukaryotic cells. In contrast to many other well-characterized protein-protein interaction modules, SAM domains have considerably more diverse interaction modes. Under the hypothesis that learning module functions can provide biological insights, we propose to assign functions to thousands of uncharacterized SAM domains by a combination of bioinformatic and proteomic techniques. Aim 1: Expand our predictions of polymeric and non-polymeric SAM domains. Our first publication partly addressed Aim 1. We computationally identified those SAMs likely to be polymeric by calculating their interaction energy when threaded onto known polymeric structures. We found 694 likely polymers, including SAM domains from the proteins Lethal Malignant Brain Tumor, Bicaudal-C, Liprin-beta, Adenylate Cyclase, and Atherin. About half of all known SAM domains could not be evaluated, however, because of low homology to known SAM structures. As part of our continuing studies, we will expand the number of predictions by including a large number of recently determined structures. Aim 2: Experimentally validate and characterize predicted SAM polymers. We will first test whether the predicted polymers actually form polymers by examining the purified SAM domains by EM. We then will further investigate their function by creating mutants that block polymerization to see whether their known functions are interrupted. Aim 3: Assign functions to non-polymerizing SAM domains. A common alternative function is hetero- oligomerization with other SAM domains. Thus, for those SAMs that don't polymerize we will investigate whether they bind to one another instead, thereby developing a SAM domain interactome. This will be accomplished by means of yeast 2-hybrid screens. Another class of SAM domains bind to nucleic acids. We will identify these computationally, by looking for nucleic acid binding site features. The methodology outlined here to investigate global SAM domain functions is likely to be widely applicable to other domain types found in a variety of other proteins. Further, the discovery new SAM functions may help identify new drug targets for different diseases.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alejandro Daniel Meruelo其他文献

Alejandro Daniel Meruelo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alejandro Daniel Meruelo', 18)}}的其他基金

Adolescent Markers of Depression and the Impact of Alcohol Use
青少年抑郁症的标志和饮酒的影响
  • 批准号:
    10434067
  • 财政年份:
    2019
  • 资助金额:
    $ 3.08万
  • 项目类别:
Adolescent Markers of Depression and the Impact of Alcohol Use
青少年抑郁症的标志和饮酒的影响
  • 批准号:
    10852676
  • 财政年份:
    2019
  • 资助金额:
    $ 3.08万
  • 项目类别:
Adolescent Markers of Depression and the Impact of Alcohol Use
青少年抑郁症的标志和饮酒的影响
  • 批准号:
    10632036
  • 财政年份:
    2019
  • 资助金额:
    $ 3.08万
  • 项目类别:
Adolescent Markers of Depression and the Impact of Alcohol Use
青少年抑郁症的标志和饮酒的影响
  • 批准号:
    10180803
  • 财政年份:
    2019
  • 资助金额:
    $ 3.08万
  • 项目类别:
Discovery of SAM domain functions
SAM域功能的发现
  • 批准号:
    8109311
  • 财政年份:
    2009
  • 资助金额:
    $ 3.08万
  • 项目类别:

相似海外基金

Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
  • 批准号:
    RGPIN-2021-04040
  • 财政年份:
    2022
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Discovery Grants Program - Individual
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
  • 批准号:
    547124-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
  • 批准号:
    547124-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
  • 批准号:
    RGPIN-2021-04040
  • 财政年份:
    2021
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Discovery Grants Program - Individual
The Molecular Mechanism of the Secretion of the Bacterial Toxin Adenylate Cyclase
细菌毒素腺苷酸环化酶分泌的分子机制
  • 批准号:
    451966
  • 财政年份:
    2021
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Operating Grants
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
  • 批准号:
    10455587
  • 财政年份:
    2020
  • 资助金额:
    $ 3.08万
  • 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
  • 批准号:
    10261394
  • 财政年份:
    2020
  • 资助金额:
    $ 3.08万
  • 项目类别:
Diagnosis and therapeutic effect of neurally mediated syncope (NMS) using fluctuation of adenylate cyclase activity
利用腺苷酸环化酶活性波动对神经介导性晕厥(NMS)的诊断和治疗效果
  • 批准号:
    20K08498
  • 财政年份:
    2020
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pituitary adenylate cyclase-activating polypeptide 27 in the paraventricular thalamus and its projections: Role in ethanol drinking
室旁丘脑中的垂体腺苷酸环化酶激活多肽 27 及其预测:在乙醇饮用中的作用
  • 批准号:
    10380126
  • 财政年份:
    2020
  • 资助金额:
    $ 3.08万
  • 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
  • 批准号:
    10662279
  • 财政年份:
    2020
  • 资助金额:
    $ 3.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了