Quantifying Model Uncertainty for Forecasting the Spread of Infectious Diseases
量化预测传染病传播的模型不确定性
基本信息
- 批准号:8269980
- 负责人:
- 金额:$ 66.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBehavior TherapyBehavioralBehavioral ModelCommunicable DiseasesCommunitiesComplexComputer SimulationComputer softwareContact TracingCoupledDataDatabasesDevelopmentDiseaseDisease OutbreaksDisease ProgressionDrug FormulationsEffectivenessEpidemicEpidemiologyFoundationsFutureGoalsHumanIncidenceInfluenza A Virus, H1N1 SubtypeInstitute of Medicine (U.S.)InterventionIntervention StudiesMeasuresMethodologyModelingPaperPatternPolicy MakerPopulationPrevalencePreventivePrincipal InvestigatorPublic HealthPublishingQuarantineRelative (related person)RelianceResearch InfrastructureResolutionScienceSevere Acute Respiratory SyndromeSimulateSystemTestingUncertaintyVaccinationbasebehavior changecomputer codecostepidemiological modelfightingimprovedmathematical modelmodels and simulationnovel strategiespandemic diseasepredictive modelingresponsesimulationsocialtoolverification and validationvirtual
项目摘要
DESCRIPTION (provided by applicant): The primary goal of our proposal is to enhance the nation's public health response capability by quantifying agent-based model uncertainty and the impact of behavioral modification on the spread of infectious diseases. Our goal is to improve the understanding of the impact of emergent behavior on the accuracy and applicability of predictive models of disease spread. We will evaluate the implications of uncertainty in human and population behavioral response to a pandemic in mathematical model formulations. This foundational understanding will help improve all existing epidemiological models thereby potentiating the ability of public health practitioners and policy-makers to effectively manage a burgeoning epidemic regardless of the tool being used. We will leverage existing epidemiologic and behavioral simulation infrastructure to develop new mathematical approaches to incorporate different types of diseases and behavioral changes alone and in combination with other intervention strategies. We will validate the models and quantify sensitivity of computational models to parameters, and known disease spread patterns. These models will be constructed for use in estimating prevalence and incidence and will allow us to compare systematically the relative effects of preventive measures, such as behavioral changes, isolation, contact tracing, quarantine, and vaccination. First, we will develop novel approaches to characterize emergent behavior and extend the mathematical foundation and software infrastructure for modeling behavior changes in response to an epidemic. Secondly, we will quantify the epidemic progression uncertainty caused by the distribution of behavioral responses. These behavioral models will be implemented and validated in an existing high-fidelity agent-based activity simulator model. Finally, we will disseminate these advances so they can be useful, and used, in other epidemiological simulations.
RELEVANCE: The data for an ongoing epidemic is sparse, inexact, and often just unavailable. Therefore, quantifying parameter and computational uncertainties is crucial for forecasting the impact of disease spread. We cannot assume impact of the uncertain parameters is negligible; especially when decisions based on the model will impact the lives of countless people. One of the fundamental limitations of the current models is in how well they capture changes in human behavior in response to an ongoing endemic.
描述(由申请人提供):我们提案的主要目标是通过量化基于主体的模型不确定性以及行为改变对传染病传播的影响来增强国家的公共卫生应对能力。我们的目标是提高对突发行为对疾病传播预测模型的准确性和适用性影响的理解。我们将评估数学模型公式中人类和群体对大流行的行为反应的不确定性的影响。这一基本认识将有助于改进所有现有的流行病学模型,从而增强公共卫生从业者和政策制定者有效管理迅速蔓延的流行病的能力,无论使用何种工具。我们将利用现有的流行病学和行为模拟基础设施来开发新的数学方法,以单独或与其他干预策略相结合来纳入不同类型的疾病和行为变化。我们将验证模型并量化计算模型对参数和已知疾病传播模式的敏感性。这些模型将用于估计患病率和发病率,并使我们能够系统地比较预防措施的相对效果,例如行为改变、隔离、接触者追踪、检疫和疫苗接种。首先,我们将开发新的方法来表征突发行为,并扩展数学基础和软件基础设施,以对应对流行病的行为变化进行建模。其次,我们将量化行为反应分布引起的流行病进展不确定性。这些行为模型将在现有的基于代理的高保真活动模拟器模型中实施和验证。最后,我们将传播这些进展,以便它们在其他流行病学模拟中有用和使用。
相关性:当前流行病的数据稀疏、不准确,而且往往无法获得。因此,量化参数和计算不确定性对于预测疾病传播的影响至关重要。我们不能假设不确定参数的影响可以忽略不计;尤其是当基于模型的决策将影响无数人的生活时。当前模型的基本局限性之一在于它们如何很好地捕捉人类行为的变化以应对持续的流行病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Del Valle其他文献
Sara Del Valle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Del Valle', 18)}}的其他基金
Quantifying Model Uncertainty for Forecasting the Spread of Infectious Diseases
量化预测传染病传播的模型不确定性
- 批准号:
8657452 - 财政年份:2011
- 资助金额:
$ 66.97万 - 项目类别:
Quantifying Model Uncertainty for Forecasting the Spread of Infectious Diseases
量化预测传染病传播的模型不确定性
- 批准号:
8476235 - 财政年份:2011
- 资助金额:
$ 66.97万 - 项目类别:
Quantifying Model Uncertainty for Forecasting the Spread of Infectious Diseases
量化预测传染病传播的模型不确定性
- 批准号:
8113568 - 财政年份:2011
- 资助金额:
$ 66.97万 - 项目类别:
相似海外基金
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Miscellaneous Programs
Function of cost bias and effect of cognitive behavior therapy on social anxiety in children and adolescents
成本偏差的作用及认知行为治疗对儿童青少年社交焦虑的影响
- 批准号:
23K02970 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combined Dialectical Behavior Therapy and Digital Cognitive Behavioral Therapy for Insomnia for Adolescents at High Risk for Suicide: A Pilot RCT
辩证行为疗法和数字认知行为疗法相结合治疗自杀高危青少年的失眠:一项试点随机对照试验
- 批准号:
10643478 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
A Randomized Clinical Trial Comparing Transdiagnostic Behavior Therapy to Disorder-Specific Psychotherapy in the Recovery of Veterans with Social Anxiety Disorder and Comorbid PTSD Symptomatology
一项随机临床试验,比较跨诊断行为疗法与特定障碍心理疗法在患有社交焦虑症和共病 PTSD 症状的退伍军人康复中的作用
- 批准号:
10746930 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Reducing suicide risk among aging caregivers of persons with AD/ADRD: Adapting, implementing, and evaluating Dialectical Behavior Therapy skills training interventions.
降低 AD/ADRD 患者老年护理人员的自杀风险:调整、实施和评估辩证行为治疗技能培训干预措施。
- 批准号:
10730708 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
A Randomized control trial of behavior therapy of tics in Japan. Exploring the behavior model of tics.
日本抽动行为治疗的随机对照试验。
- 批准号:
22K13840 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Behavior Therapy Combined with Buprenorphine for the Treatment of Opioid Use Disorder
行为疗法联合丁丙诺啡治疗阿片类药物使用障碍的作用
- 批准号:
10440820 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效
- 批准号:
10429841 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效
- 批准号:
10656415 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression - supplement
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效 - 补充
- 批准号:
10794868 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别: