High-throughput robotic analysis of integrated neuronal phenotypes
集成神经元表型的高通量机器人分析
基本信息
- 批准号:8549259
- 负责人:
- 金额:$ 89.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-30 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBiologyBiopsyBrainCellsCharacteristicsComplexCouplingDNADataData AnalysesData SetDevelopmentDevicesDiagnosticDiseaseDrug TargetingDyesEducational process of instructingEpilepsyExhibitsGene DeliveryGene Expression ProfileGenesGoalsHarvestHealthHeterogeneityHumanImageImageryIndividualInfusion proceduresInstitutesLabelLifeMalignant NeoplasmsManuscriptsMapsMedicineMessenger RNAMethodsMolecularMolecular TargetMorphologyMusNeuronsOrganPatient CarePatternPhenotypePopulationPrefrontal CortexProcessPropertyRNA SequencesRobotRoboticsSamplingScienceScientistShapesSliceSomatosensory CortexSpeedStereotypingSurveysTaxonomyTeaTechniquesTechnologyTherapeuticTissuesTransgenic MiceVariantVirusVisualization softwareWorkbiocytinblindbody systembrain cellbrain tissuecell typeelectrical propertyempoweredexperienceforestimprovedin vivoinnovationmultidisciplinarypatch clampprotein expressionprototyperelating to nervous systemsingle cell analysistissue processingtooltranscriptomics
项目摘要
DESCRIPTION (provided by applicant): The cells of the brain exhibit a diversity of expressed genes, morphologies, and electrophysiological properties, and have come to be grouped into "cell types" that are distinguished by one or more of these characteristics. However, there is no one-to-one correspondence between cell type-defining expressed genes, morphological characteristics, and electrophysiological properties and no unified taxonomy of brain cells. Furthermore, cells routinely change their expressed genes, morphologies, and electrophysiological properties, as a result of development, plasticity, or disease, raising the question of how to categorize cell types as they change their states as a result of experience. Accordingly, we propose to develop a powerful, easy-to-use tool that enables the integrative phenotyping of cells of the brain - namely, a robot that can acquire simultaneously the gene expression patterns, morphologies, and electrophysiological properties of single cells in brain tissue, in an automated fashion. Recently, two of our labs developed a prototype "autopatching" robot that enables automated whole-cell patch clamp recording of neurons in living mouse brain, significantly increasing the efficiency of this highly challenging task. In a multidisciplinary tea, we propose to augment this robot, coupling it to transcriptional and morphological analysis strategies, yielding a platform for the comprehensive characterization of single cells in intact tissues. We will develop variants of the robot and its algorithms to enable it to patch in brain slices, including in an image guided fashion (Aim 1), to extract transcriptomic information (Aim 2), and to perform morphological fills (Aim 3) and gene delivery to cells (Aim 5). We will also create massively parallel autopatching robots (Aim 4). We will autopatch hundreds to thousands of single cells from different cortical regions of mice (Aim 6), in vivo as well as in slices, both
broadly surveying cells, as well as targeting specific fluorescently labeled neural populations. We will create visualization software to help with analysis of the integrated cell profiles that emerge, aiming to estimate the dimensionality of "cell type space", characterize cell- to-cell heterogeneity, and discover optimal cell type markers for molecular targeting. Our goal is to create a powerful, easy-to-use toolbox that makes fundamentally new kinds of science possible, converting the critical tasks of categorizing cell types, and characterizing cell states, into routne, simple tasks. As our goal is to develop a toolbox which will have very broad applicability, we are focusing our innovation not only on power, but ease of use, aiming to enable fields across biology to characterize normal and diseased organ states at the single cell level. We will distribute all tools, methods, and datasets as freely as possible, and teach others to use these technologies. As many diseases affect different cells to different extents, we will seek to commercialize our work to enable diagnostic or therapeutic tools that directly improve human health.
描述(由申请人提供):脑细胞表现出表达基因、形态和电生理学特性的多样性,并且已被分为通过这些特征中的一个或多个来区分的“细胞类型”。然而,细胞类型定义表达基因、形态特征和电生理特性之间不存在一一对应的关系,也没有统一的脑细胞分类法。此外,由于发育、可塑性或疾病,细胞通常会改变其表达的基因、形态和电生理特性,这就提出了如何对细胞类型进行分类的问题,因为它们会因经验而改变其状态。因此,我们建议开发一种功能强大、易于使用的工具,能够对大脑细胞进行综合表型分析,即一个能够以自动化方式同时获取脑组织中单个细胞的基因表达模式、形态和电生理特性的机器人。最近,我们的两个实验室开发了一种原型“自动修补”机器人,可以对活体小鼠大脑中的神经元进行自动全细胞膜片钳记录,从而显着提高了这项极具挑战性的任务的效率。在多学科茶中,我们建议增强该机器人,将其与转录和形态分析策略相结合,从而产生一个用于完整组织中单细胞的综合表征的平台。我们将开发机器人的变体及其算法,使其能够修补大脑切片,包括以图像引导方式(目标 1)、提取转录组信息(目标 2)以及执行形态填充(目标 3)和向细胞传递基因(目标 5)。我们还将创建大规模并行自动修补机器人(目标 4)。我们将自动修补来自小鼠不同皮质区域的数百至数千个单细胞(目标 6),无论是在体内还是在切片中
广泛地调查细胞,以及针对特定的荧光标记的神经群体。我们将创建可视化软件来帮助分析出现的整合细胞概况,旨在估计“细胞类型空间”的维度,表征细胞间的异质性,并发现用于分子靶向的最佳细胞类型标记。我们的目标是创建一个功能强大、易于使用的工具箱,使全新的科学成为可能,将细胞类型分类和细胞状态表征的关键任务转化为常规、简单的任务。由于我们的目标是开发一个具有非常广泛适用性的工具箱,因此我们的创新不仅注重功能,而且注重易用性,旨在使生物学领域能够在单细胞水平上表征正常和患病器官状态。我们将尽可能免费地分发所有工具、方法和数据集,并教其他人使用这些技术。由于许多疾病不同程度地影响不同的细胞,我们将寻求将我们的工作商业化,以实现直接改善人类健康的诊断或治疗工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward S. Boyden其他文献
Q&A: Expansion microscopy
- DOI:
10.1186/s12915-017-0393-3 - 发表时间:
2017-06-19 - 期刊:
- 影响因子:4.500
- 作者:
Ruixuan Gao;Shoh M. Asano;Edward S. Boyden - 通讯作者:
Edward S. Boyden
Canal à cations activés par la lumière et ses utilisations
运河 à 阳离子 activés par la lumière et ses utilizations
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;Karl Deisseroth - 通讯作者:
Karl Deisseroth
Procédés et compositions destinés à diminuer la douleur chronique
慢性悲伤的进程和作曲
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;J. Eisenach;Kenneth P. Greenberg;Alan Horsager;Benjamin C. Matteo;Douglas G. Ririe;Christian T. Wentz - 通讯作者:
Christian T. Wentz
A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features
转移性乳腺癌活检的多模态单细胞和空间表达图谱,涵盖临床病理特征
- DOI:
10.1038/s41591-024-03215-z - 发表时间:
2024-10-30 - 期刊:
- 影响因子:50.000
- 作者:
Johanna Klughammer;Daniel L. Abravanel;Åsa Segerstolpe;Timothy R. Blosser;Yury Goltsev;Yi Cui;Daniel R. Goodwin;Anubhav Sinha;Orr Ashenberg;Michal Slyper;Sébastien Vigneau;Judit Jané‐Valbuena;Shahar Alon;Chiara Caraccio;Judy Chen;Ofir Cohen;Nicole Cullen;Laura K. DelloStritto;Danielle Dionne;Janet Files;Allison Frangieh;Karla Helvie;Melissa E. Hughes;Stephanie Inga;Abhay Kanodia;Ana Lako;Colin MacKichan;Simon Mages;Noa Moriel;Evan Murray;Sara Napolitano;Kyleen Nguyen;Mor Nitzan;Rebecca Ortiz;Miraj Patel;Kathleen L. Pfaff;Caroline B. M. Porter;Asaf Rotem;Sarah Strauss;Robert Strasser;Aaron R. Thorner;Madison Turner;Isaac Wakiro;Julia Waldman;Jingyi Wu;Jorge Gómez Tejeda Zañudo;Diane Zhang;Nancy U. Lin;Sara M. Tolaney;Eric P. Winer;Edward S. Boyden;Fei Chen;Garry P. Nolan;Scott J. Rodig;Xiaowei Zhuang;Orit Rozenblatt-Rosen;Bruce E. Johnson;Aviv Regev;Nikhil Wagle - 通讯作者:
Nikhil Wagle
Long time silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice
使用古视紫红质长时间沉默食欲素/下丘脑分泌素神经元可诱导小鼠慢波睡眠
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tomomi Tsunematsu;Sawako Tabuchi;Edward S. Boyden;Kenji F. Tanaka;Akihiro Yamanaka - 通讯作者:
Akihiro Yamanaka
Edward S. Boyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward S. Boyden', 18)}}的其他基金
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10487389 - 财政年份:2021
- 资助金额:
$ 89.28万 - 项目类别:
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10663344 - 财政年份:2021
- 资助金额:
$ 89.28万 - 项目类别:
Multiplexed Nanoscale Protein Mapping Through Expansion Microscopy and Immuno-SABER
通过膨胀显微镜和免疫 SABRE 进行多重纳米级蛋白质图谱
- 批准号:
10088537 - 财政年份:2020
- 资助金额:
$ 89.28万 - 项目类别:
High-throughput approaches to local and long-range synaptic connectivity
局部和远程突触连接的高通量方法
- 批准号:
10025780 - 财政年份:2020
- 资助金额:
$ 89.28万 - 项目类别:
RNA Scaffolds for Cell Specific Multiplexed Neural Observation
用于细胞特异性多重神经观察的 RNA 支架
- 批准号:
9981014 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9369530 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9978808 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
Scalable Cell- and Circuit-Targeted Electrophysiology
可扩展的细胞和电路靶向电生理学
- 批准号:
9893932 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
相似海外基金
REU Site: Algorithms and Optimization for Sustainability and Biology
REU 网站:可持续性和生物学的算法和优化
- 批准号:
2243010 - 财政年份:2023
- 资助金额:
$ 89.28万 - 项目类别:
Standard Grant
Multi-resolution Molecular Dynamics Algorithms for Computational Biology
计算生物学的多分辨率分子动力学算法
- 批准号:
EP/V047469/1 - 财政年份:2021
- 资助金额:
$ 89.28万 - 项目类别:
Research Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2020
- 资助金额:
$ 89.28万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2019
- 资助金额:
$ 89.28万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2018
- 资助金额:
$ 89.28万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning Algorithms for Actionable Knowledge Discovery in Synthetic Biology
合成生物学中可操作知识发现的机器学习算法
- 批准号:
2132169 - 财政年份:2018
- 资助金额:
$ 89.28万 - 项目类别:
Studentship
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1704552 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
Standard Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
Discovery Grants Program - Individual
Workshop on Future Directions for Algorithms in Biology
生物学算法未来方向研讨会
- 批准号:
1748493 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1703489 - 财政年份:2017
- 资助金额:
$ 89.28万 - 项目类别:
Standard Grant