Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells

Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程

基本信息

  • 批准号:
    8391627
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In the United States and throughout the world, cancer incidence and mortality has increased dramatically in both developed and developing nations. Cancer causes ~13% of human deaths with 7.6 million people dying from cancer in 2007. More people in the US die of lung cancer than breast, colon, kidney, and prostate cancers combined. Recent studies show that veterans are 25 to 75 percent more likely to develop lung cancer than people who did not serve in the military; yet therapies for lung cancer and other solid tumors are still limited. Early in the 1900's, Coley successfully used a mix of heat-killed Streptococcus and Serratia bacteria to treat a variety of sarcomas and other cancers. Similar treatments today with live BCG help prevent recurrence of bladder cancer. The effectiveness of these therapies provides evidence that it is possible to treat malignancies by activating the immune system with bacteria. A wide variety of approaches are now being tried to stimulate tumor immunity by 12 T cells using tumor-specific peptide antigens. However, since CD4 and CD8 12 T cells recognize these peptides bound to MHC molecules in an MHC-restricted fashion, immunotherapy with 12 T cells needs to be individualized for each MHC haplotype. In contrast, 34 T cells represent a unique subset of T cells that bridge innate and adaptive immunity by recognizing nonpeptide antigens in an MHC-unrestricted manner. The major subset of human 34 T cells use their V32V42 T cell receptors to recognize the foreign-microbial isoprenoid metabolite, HMBPP and the self- metabolite, IPP. V32V42 T cells expand in the blood with a variety of infections and then accumulate at peripheral sites. Recognition of HMBPP activates 34 T cells to produce Th1 cytokines, kill infected cells, and produce growth factors to repair mucosal surfaces. Human 34 T cells also help to regulate malignancies. Once activated, V32V42 T cells use their TCR and NK receptors to recognize and kill a wide variety of tumor cells irrespective of their tissue origin, MHC expression, or MHC-haplotype. Since V32V42 T cells also express the CD16 immunoglobulin Fc receptor, they kill tumor cells sensitized by anti-tumor antibodies. In recent years, immunotherapy with prenyl pyrophosphates or bisphosphonates and IL-2 to stimulate V32V42 T cells alone or in conjunction with rituximab for lymphoma has shown promise since these treatments resulted in complete and partial remissions or stable disease in patients with lymphoma and metastatic renal or prostate cancer. However, repeat immunizations lead to anergy and deletion of V32V42 T cells. Metabolic engineering of bacteria is a new field of study that has, up to now, been focused on altering bacteria for drug or chemical synthesis or for the generation of alternative fuels. Directed changes in bacterial metabolism are made by modifying specific biochemical reactions or by introducing new ones. No group has attempted to metabolically engineer bacteria to derive 34 vaccines. We now propose to develop new vaccines for V32V42 T cell cancer immunotherapy by metabolic engineering Salmonella and Listeria bacteria to overproduce HMBPP. Both species have been used for cancer vaccines but differ significantly since the Gram negative Salmonella uses the MEP pathway and is given orally whereas the Gram positive Listeria uses both the MEP and mevalonate pathways and is given intravenously. These fundamental differences may result in qualitatively different V32V42 stimulation so both will be pursued. These vaccines will activate V32V42 T cells to kill tumor cells by TCR and NKR recognition or by antibody-dependent cellular cytotoxicity through anti-tumor mAbs bound to CD16. To accomplish our goals, we will: (1) metabolically engineer vaccine bacteria to overproduce HMBPP, (2) test engineered bacteria in vitro for HMBPP levels, growth rates, virulence, and ability to infect and proliferate in human cells, (3) test engineered bacteria in vivo in monkeys, and (4) assess the ability of V32V42 T cells stimulated by metabolically engineered bacteria to control tumors.
描述(由申请人提供): 在美国乃至全世界,在发达国家和发展中国家中,癌症的发病率和死亡率都大大增加。癌症导致约13%的人死亡,2007年有760万人死于癌症。美国死于肺癌的人多于乳腺癌,结肠,肾脏和前列腺癌的癌症。最近的研究表明,与未在军队中服役的人相比,退伍军人患肺癌的可能性高25%至75%。然而,肺癌和其他实体瘤的疗法仍然有限。在1900年代初,Coley成功地使用了热杀死的链球菌和锯齿细菌来治疗各种肉瘤和其他癌症。如今,实时BCG类似治疗有助于防止膀胱癌复发。这些疗法的有效性提供了证据,表明可以通过细菌激活免疫系统来治疗恶性肿瘤。现在,正在尝试使用肿瘤特异性肽抗原刺激12个T细胞刺激肿瘤免疫的多种方法。但是,由于CD4和CD8 12 T细胞以MHC限制的方式识别与MHC分子结合的这些肽,因此需要为每种MHC单倍型的12个T细胞进行免疫疗法。 相比之下,34个T细胞代表了T细胞的独特子集,该子集通过以MHC无限制的方式识别非肽抗原来弥合先天和适应性免疫。人类34 T细胞的主要子集使用其V32V42 T细胞受体来识别外菌类异丙型代谢物,HMBPP和自代谢产物IPP IPP。 V32V42 T细胞在血液中膨胀,并在各种感染中膨胀,然后在外围部位积聚。识别HMBPP会激活34个T细胞以产生Th1细胞因子,杀死感染细胞并产生生长因子来修复粘膜表面。人类34个T细胞还有助于调节恶性肿瘤。一旦激活,V32V42 T细胞使用其TCR和NK受体来识别和杀死各种各样的肿瘤细胞,而与其组织起源,MHC表达或MHC-HAPLOTYPE无关。由于V32V42 T细胞还表达CD16免疫球蛋白FC受体,因此它们杀死了抗肿瘤抗体敏感的肿瘤细胞。近年来,促肾上腺磷酸盐或双膦酸盐和IL-2的免疫疗法单独刺激V32V42 T细胞或与利妥昔单抗结合淋巴瘤的V32V42 T细胞,因为这些治疗导致淋巴瘤和肾上腺肾脏或肾上腺肾脏或前列腺癌患者的完全和部分缓解或稳定病。但是,重复免疫导致V32V42 T细胞的不含量和缺失。 细菌的代谢工程是一个新的研究领域,到目前为止,它一直致力于改变药物或化学合成的细菌或产生替代燃料。细菌代谢的定向变化是通过修改特定的生化反应或引入新的变化。没有人试图将新陈代谢的细菌推导34种疫苗。现在,我们建议通过代谢工程沙门氏菌和李斯特菌细菌为V32V42 T细胞癌免疫疗法开发新的疫苗,从而过量生产HMBPP。两种物种都用于癌症疫苗,但由于革兰氏阴性沙门氏菌使用MEP途径,因此口服了显着差异,而革兰氏阳性李斯特菌同时使用MEP和Mevalonate途径,并静脉注射。这些基本差异可能会导致质量不同的V32V42刺激,因此两者都将被追求。这些疫苗将通过TCR和NKR识别或通过与CD16结合的抗肿瘤MABS激活V32V42 T细胞,或通过TCR和NKR识别或抗体依赖性细胞毒性杀死肿瘤细胞。 为了实现我们的目标,我们将:(1)代谢工程疫苗细菌过量产生HMBPP,(2)(2)在体外测试的细菌,用于HMBPP水平,增长率,毒力,毒力,毒力,以及在人类细胞中感染和增殖的能力,(3)通过MENKEYS IN MONKEYS IN ENSERTER INTRERERIAL IN MONE INTRERERIAL IN MONE INTRERITY CORMITER INTRERY(4)v3222222细菌控制肿瘤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CRAIG T MORITA其他文献

CRAIG T MORITA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CRAIG T MORITA', 18)}}的其他基金

Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    10516094
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    8143090
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    10412920
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    8598011
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    10057222
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    9206071
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Metabolic Engineering of Bacteria for Cancer Immunotherapy by Gamma Delta T Cells
Gamma Delta T 细胞用于癌症免疫治疗的细菌代谢工程
  • 批准号:
    8922337
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Gamma Delta T cell Recognition in Tularemia
兔热病中的 Gamma Delta T 细胞识别
  • 批准号:
    7945860
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Gamma Delta T Cell Recognition in Tularemia
兔热病中的 Gamma Delta T 细胞识别
  • 批准号:
    7641850
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
Immunotherapy with Gamma Delta T Cells for B Cell Tumors
使用 Gamma Delta T 细胞治疗 B 细胞肿瘤的免疫疗法
  • 批准号:
    6906987
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
  • 批准号:
    82300679
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
  • 批准号:
    82301784
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
  • 批准号:
    82301217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
  • 批准号:
    10826874
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
An immunotherapeutic IgY formulation against norovirus diarrhea
一种针对诺如病毒腹泻的免疫治疗 IgY 制剂
  • 批准号:
    10693530
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Protective antibody in streptococcal infection models
链球菌感染模型中的保护性抗体
  • 批准号:
    10576491
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Hyaluronan as a mediator of intrauterine growth restriction-induced islet dysfunction in type 2 diabetes
透明质酸作为 2 型糖尿病宫内生长受限诱导的胰岛功能障碍的介质
  • 批准号:
    10303293
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Integrative analysis of multi-omics data to delineate CCL2 associated inflammatory pathways in Alzheimers Disease
多组学数据综合分析以描绘阿尔茨海默病中 CCL2 相关炎症通路
  • 批准号:
    10369676
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了