Reprogramming the Outputs of Spinal Circuits
重新编程脊髓电路的输出
基本信息
- 批准号:7698303
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAreaAxonBiological AssayBiological ModelsBoxingChronicClinicalConditioned ReflexDiseaseEffectivenessElectric StimulationElectromyographyElementsExerciseGoalsGray unit of radiation doseGrowthInjuryInterventionLocomotionMeasuresMotorMotor NeuronsMovementMuscleMuscle functionMusculoskeletalMusculoskeletal SystemNatural regenerationNerveNeuronsOperant ConditioningOperative Surgical ProceduresOutcomeOutputPathway interactionsPatientsPatternPeripheralPeripheral NervesPeripheral nerve injuryPlasticsPopulationProcessProtocols documentationRattusRecoveryRecovery of FunctionRehabilitation therapyScienceSensoryShapesSpecificitySpinalSpinal CordStimulusTextTimeTrainingabstractingankle jointaxon regenerationbaseconditioningdesignfunctional outcomesimprovedinjuredinjury and repairinnovationkinematicsnerve supplyneural circuitreinnervationrepairedresearch studyresponserestorationsciatic nervesensory feedbackspinal reflex
项目摘要
Abstract
When a peripheral nerve is injured, the relationship between the musculoskeletal system and
the neural circuits in the spinal cord which regulate movement is lost. Axons in the proximal stump of
the cut nerve can regenerate and can reinnervate peripheral targets, but muscles are often
reinnervated by different motoneurons than before the injury. Using different paradigms which will
enhance the early regeneration of axons in cut nerves exacerbates this loss of topographic specificity.
Over time, there is little evidence for remodeling of this innervation pattern. This new relationship
between spinal circuits and the musculoskeletal system is a major contributor to the poor functional
outcomes observed clinically. One potential strategy for improving functional recovery might be to
induce adaptive changes in the spinal circuits themselves, such that an improved functional
relationship of their outputs to the pattern of reinnervation of the musculoskeletal system might be
achieved. In this project, we will investigate the capacity to induce such adaptive changes.. Using
transection and surgical repair of the rat sciatic nerve, with and without enhancement of early axon
regeneration, as a model system, we will study the capacity of the outputs of spinal circuits to adapt
spontaneously over time by analyzing the timing of activity of antagonist muscles and ankle joint
kinematics during different forms of treadmill locomotion. In addition, two innovative approaches to
modifying the outputs of spinal circuits will be studied. First, we will examine the effect of treadmill
exercise during the reinnervation period on the extent to which different reinnervated muscular targets
are activated at functionally appropriate times. By activating motoneurons through spinal circuits
during treadmill locomotion at a time that regenerating motor and sensory axons are growing and
reforming connections with muscles, one might anticipate either that the original reinnervation of
muscles might be more precise than found without exercise, that the outputs of the spinal circuits will
change in an adaptive manner during the reinnervation process, or both. Second, we will investigate
whether operant conditioning of spinal reflexes can be used to modify the outputs of spinal circuits.
After muscles have been reinnervated, spinal reflexes will be shaped to produce functionally
appropriate responses using such conditioning. The effectiveness of this training on the timing of
antagonist muscles during treadmill locomotion will be evaluated. It is anticipated that the results of
these studies will provide a science base not only for improved rehabilitation treatment of a large
population of patients with peripheral nerve injuries but also the treatment of other disorders in which
the relationship between spinal circuits and the musculoskeletal system has been disrupted and then
re-established.
摘要
当周围神经损伤时,肌肉骨骼系统和
脊髓中控制运动的神经回路丧失。轴突在近端残端
被切断的神经可以再生,并可以重新支配周围目标,但肌肉通常
与损伤前相比,由不同的运动神经元重新支配。使用不同的范例,
增强切断的神经中轴突的早期再生加剧了这种地形特异性的丧失。
随着时间的推移,几乎没有证据表明这种神经支配模式的重塑。这种新关系
脊髓回路和肌肉骨骼系统之间的相互作用是导致脊髓功能差的主要原因。
临床观察结果。改善功能恢复的一个潜在策略可能是
诱导脊髓回路自身的适应性变化,使得改善的功能
它们的输出与肌肉骨骼系统的神经再支配模式的关系可能是
办妥了一批在这个项目中,我们将研究诱导这种适应性变化的能力。使用
大鼠坐骨神经切断和手术修复,早期轴突增强和不增强
再生,作为一个模型系统,我们将研究脊髓回路的输出适应能力,
通过分析拮抗肌和踝关节活动的时间,
在不同形式的跑步机运动期间的运动学。此外,还提出了两种创新办法,
将研究修改脊髓电路的输出。首先,我们将研究跑步机的效果
在神经再支配期间的运动对不同的神经再支配肌肉目标的程度
在功能上适当的时候被激活。通过脊髓回路激活运动神经元
在跑步机运动期间,再生运动和感觉轴突正在生长,
重建与肌肉的连接,人们可能会预期,
肌肉可能比没有锻炼时更精确,脊髓回路的输出将
在神经再支配过程中以适应性方式改变,或两者。第二,我们会调查
脊髓反射的操作性条件反射是否可以用来改变脊髓回路的输出。
在肌肉被重新神经支配后,脊髓反射将被塑造成功能性地产生
使用这种条件反射的适当反应。这种培训在时间安排上的有效性
将评估在跑步机运动期间的拮抗肌。预计,
这些研究不仅将为改善大面积脑梗死的康复治疗提供科学依据,
周围神经损伤患者人群的治疗,以及其他疾病的治疗,
脊髓回路和肌肉骨骼系统之间的关系被破坏,
重新建立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur W. English其他文献
Compartmentalization of single muscle units in cat lateral gastrocnemius
猫腓肠肌外侧单个肌肉单位的区室化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:2
- 作者:
Arthur W. English;O. Weeks - 通讯作者:
O. Weeks
Post-translational phosphorylation of the slow/β myosin heavy chain isoform in adult rabbit masseter muscle
- DOI:
10.1023/a:1015083616319 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:1.700
- 作者:
Marlyanne M. Pol-Rodriguez;Gaila A. Schwartz;Arthur W. English - 通讯作者:
Arthur W. English
Fiber-type proportions in mammalian soleus muscle during postnatal development.
哺乳动物出生后发育过程中比目鱼肌的纤维类型比例。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Donald J. Wigston;Arthur W. English - 通讯作者:
Arthur W. English
Arthur W. English的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur W. English', 18)}}的其他基金
Bioluminescent optogenetics to promote axon regeneration
生物发光光遗传学促进轴突再生
- 批准号:
9979122 - 财政年份:2020
- 资助金额:
$ 32.94万 - 项目类别:
The molecular mechanism and therapeutics in axon regeneration
轴突再生的分子机制和治疗方法
- 批准号:
10208978 - 财政年份:2018
- 资助金额:
$ 32.94万 - 项目类别:
The Molecular Mechanism and Therapeutics in Axon Regeneration
轴突再生的分子机制和治疗学
- 批准号:
10487414 - 财政年份:2018
- 资助金额:
$ 32.94万 - 项目类别:
The molecular mechanism and therapeutics in axon regeneration
轴突再生的分子机制和治疗方法
- 批准号:
9789381 - 财政年份:2018
- 资助金额:
$ 32.94万 - 项目类别:
Exercise, neurotrophins and axon regeneration in the PNS
运动、神经营养因子和三七总皂甙中的轴突再生
- 批准号:
7175528 - 财政年份:2007
- 资助金额:
$ 32.94万 - 项目类别:
Exercise, neurotrophins and axon regeneration in the PNS
运动、神经营养因子和三七总皂甙中的轴突再生
- 批准号:
8133163 - 财政年份:2007
- 资助金额:
$ 32.94万 - 项目类别:
Exercise, neurotrophins and axon regeneration in the PNS
运动、神经营养因子和三七总皂甙中的轴突再生
- 批准号:
7341669 - 财政年份:2007
- 资助金额:
$ 32.94万 - 项目类别:
Exercise, neurotrophins and axon regeneration in the PNS
运动、神经营养因子和三七总皂甙中的轴突再生
- 批准号:
7544515 - 财政年份:2007
- 资助金额:
$ 32.94万 - 项目类别:
Exercise, neurotrophins and axon regeneration in the PNS
运动、神经营养因子和三七总皂甙中的轴突再生
- 批准号:
7848612 - 财政年份:2007
- 资助金额:
$ 32.94万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 32.94万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 32.94万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




