Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation

用于并行多目标光遗传学电路操纵的三维全息术

基本信息

  • 批准号:
    8826957
  • 负责人:
  • 金额:
    $ 42.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-30 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Understanding communication between neurons, who is talking to whom, and what language they are speaking, is essential for discovering how brain circuits underlie brain function and dysfunction. Over the past decades, Neuroscience has made exponential progress toward recording and imaging communication between neurons. In addition, geneticists have recently developed the capability to manipulate neurons with light through the expression of light-activated microbial proteins called "opsins." Now, neuroscientists can drive neural circuits in order to determine how they give rise to sensation, perception, and cognitive function. In order to take full advantage of "optogenetic" tools, we are developing holographic methods to deliver patterned light into brain tissue, to enable simultaneous activation of multiple neurons, independently controlling the strength and timing of light targeted to each cell. Here, we propose to: (1) characterize newly developed opsins to determine which are best suited for holographic activation techniques; (2) implement holographic light patterns in three-dimensions; and, (3) distribute and iteratively optimize the 3D holography system in collaboration with Neuroscientists studying circuits in optically and physiologically diverse neura systems. The end goal is to develop a robust system, capable of manipulating neurons in patterns that mimic naturally occurring activity. Insights gained through this collaborative optimization will be used to inform the design of the commercial prototype developed by our industry collaborator Intelligent Imaging Innovations, Inc. (Denver, CO). The system can thus be widely distributed for neural circuit investigation, both in-vitro and in-vivo, to discover how neual communication gives rise to sensation, perception, cognition, and behavior. Such insights will improve our ability to identify effective targets and methods for treating neurological diseases and disorders.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valentina Emiliani其他文献

Valentina Emiliani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valentina Emiliani', 18)}}的其他基金

Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation
用于并行多目标光遗传学电路操纵的三维全息术
  • 批准号:
    8934226
  • 财政年份:
    2014
  • 资助金额:
    $ 42.77万
  • 项目类别:
Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation
用于并行多目标光遗传学电路操纵的三维全息术
  • 批准号:
    9130301
  • 财政年份:
    2014
  • 资助金额:
    $ 42.77万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 42.77万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 42.77万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 42.77万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 42.77万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了