DANDI: Distributed Archives for Neurophysiology Data Integration

DANDI:神经生理学数据集成的分布式档案

基本信息

项目摘要

Neuroscientific data contain information from an incredible diversity of species, are generated by a plethora of devices, and encapsulate the results of scientific thinking and decision making. Most of this generated data remains confined within laboratories and is not accessible to the broader scientific community. The research projects awarded under the Brain Initiative are generating a diverse collection of data that can transform and accelerate the pace of discovery. These datasets are large--ranging in size from GBs to PBs-- and represent diverse data types and assorted metadata. To integrate, rather than further isolate, these numerous efforts there is a need to archive, preserve, share, and process data in a way that is meaningful to neuroscience researchers. Any technological solution should reduce redundancy of storage and computation, allow computing near data, and provide easy, but protected when appropriate, access to researchers or citizen scientists. Given the scale of these initiatives and the range of sample sizes and data types, any solution should also consider the broad range of individual technical expertise in the community and therefore allow easy engagement with and ingestion into an archive, while supporting education and training of the scientists in using these technologies. To solve these problems, we propose ​DANDI: Distributed Archives for Neurophysiology Data Integration.​We leverage our team’s extensive experience in informatics, standards development, software engineering, community building, and leverage a robust open-source software stack to create this archive. The archive will lower barriers for neuroscientists by using the ​Neurodata Without Borders (NWB; ​http://nwb.org​) standard as a consistent data format, by providing interoperability with other standards, and by providing robust tools and convenient Web interfaces to interact with the archive. DANDI will: 1) ​provide a cloud platform for versioned neurophysiology data storage for the purposes of collaboration, archiving, and preservation. 2) ​provide easy to use tools for neurophysiology data submission and access in the archive; and 3) facilitate adoption of NWB via standardized applications for data ingestion, visualization and processing. ​We will work with local investigators, the broader neurophysiology community, and with federal and other funders to determine how long and which pieces of data will be stored in DANDI. The archive will also use state of the art data distribution technologies to increase redundancy and fault tolerance, and allow distributed computing across cloud and local computing resources. Consequently the effort will significantly reduce the barrier between laboratories and the cloud, fostering collaboration and data exchange. Overall, we aim to leverage our collective expertise to create and support an NWB-based neurophysiology archive that seamlessly integrates with and enhances current researcher workflows, lowers barriers for scientific inquiry and collaboration, and preserves information for wide reuse.
神经科学数据包含了来自令人难以置信的物种多样性的信息,这些信息是由过量的 设备,并封装了科学思考和决策的结果。这些生成的数据大部分 仍然局限在实验室内,更广泛的科学界无法接触到。这项研究 根据大脑倡议授予的项目正在生成多样化的数据集合,这些数据可以转变为 加快发现步伐。这些数据集很大,大小从GB到PB不等,它们代表 多样的数据类型和分类的元数据。整合而不是进一步孤立这些众多的努力 需要以对神经科学有意义的方式来归档、保存、共享和处理数据 研究人员。任何技术解决方案都应该减少存储和计算的冗余,允许 接近数据的计算,并在适当情况下提供对研究人员或公民的简单但受保护的访问 科学家们。考虑到这些计划的规模以及样本大小和数据类型的范围,任何解决方案都应该 还考虑到社区中广泛的个人技术专长,因此允许轻松 参与和摄取档案,同时支持对科学家的教育和培训 使用这些技术。为了解决这些问题,我们提出了​DANDI:分布式档案 神经生理学数据集成。​我们利用我们团队在信息学、标准方面的丰富经验 开发、软件工程、社区建设,并利用强大的开源软件堆栈 创建此存档。该档案将通过使用​无国界神经数据来降低神经科学家的门槛 (NWB;http://nwb.org​​)标准作为一致的数据格式,通过提供与其他 标准,并提供强大的工具和方便的Web界面来与档案进行交互。丹迪 将:1)​提供用于版本化神经生理学数据存储的云平台,用于 协作、归档和保存。2)​提供了简单易用的神经生理学数据提交工具 和档案中的访问;以及3)通过用于数据摄取的标准化应用促进采用NWB, 可视化和处理。​我们将与当地研究人员、更广泛的神经生理学社区合作, 并与联邦和其他资助者一起决定丹迪将存储多长时间和哪些数据。 档案馆还将使用最先进的数据分发技术来增加冗余和故障 容忍性,并允许跨云和本地计算资源进行分布式计算。因此, 努力将显著减少实验室和云之间的障碍,促进协作和数据 交换。总体而言,我们的目标是利用我们的集体专业知识来创建和支持基于NWB的 与当前研究人员工作流程无缝集成并增强的神经生理学档案,降低了 为科学研究和合作设置障碍,并保存信息以供广泛重复使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satrajit Sujit Ghosh其他文献

Satrajit Sujit Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satrajit Sujit Ghosh', 18)}}的其他基金

An extensible brain knowledge base and toolset spanning modalities for multi-species data-driven cell types
可扩展的大脑知识库和工具集,涵盖多物种数据驱动细胞类型的模式
  • 批准号:
    10686977
  • 财政年份:
    2022
  • 资助金额:
    $ 134.97万
  • 项目类别:
Nobrainer: A robust and validated neural network tool suite for imagers
Nobrainer:适用于成像仪的强大且经过验证的神经网络工具套件
  • 批准号:
    10021957
  • 财政年份:
    2020
  • 资助金额:
    $ 134.97万
  • 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
  • 批准号:
    10629424
  • 财政年份:
    2019
  • 资助金额:
    $ 134.97万
  • 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
  • 批准号:
    10393510
  • 财政年份:
    2019
  • 资助金额:
    $ 134.97万
  • 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
  • 批准号:
    9981835
  • 财政年份:
    2019
  • 资助金额:
    $ 134.97万
  • 项目类别:
Nipype: Dataflows for Reproducible Biomedical Research
Nipype:可重复生物医学研究的数据流
  • 批准号:
    9053094
  • 财政年份:
    2016
  • 资助金额:
    $ 134.97万
  • 项目类别:
DISSEMINATION OF CROSS-PLATFORM SOFTWARE FOR ARTIFACT DETECTION AND REGION OF INT
伪影检测和INT区域跨平台软件的传播
  • 批准号:
    7501200
  • 财政年份:
    2008
  • 资助金额:
    $ 134.97万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 134.97万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 134.97万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 134.97万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 134.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了