Nipype: Dataflows for Reproducible Biomedical Research
Nipype:可重复生物医学研究的数据流
基本信息
- 批准号:9053094
- 负责人:
- 金额:$ 71.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-15 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAlgorithmsArchitectureAutomationBackBig Data to KnowledgeBiomedical ResearchBrainBrain imagingCodeCommunitiesComplexComputer softwareCoupledDataData AnalysesData ProvenanceData SetData SourcesDatabasesDevelopmentDiagnosisDiagnosticDocumentationEcosystemEducationEducational workshopEnsureExposure toGalaxyGoalsImage AnalysisImageryImaging technologyLeadLibrariesLicensingMethodsOnline SystemsOutputPythonsReproducibilityResearchResearch InfrastructureResearch PersonnelResourcesServicesSoftware EngineeringSoftware ToolsSolidStagingSynapsesSystemTestingTrainingValidationVisualWorkbasebench to bedsidebioimagingclinical applicationcomputerized data processingcostdata accessdata managementdesignflexibilitygraphical user interfaceimprovedinteroperabilitynervous system disorderneuroimagingopen sourceprognosticprogramsrepositorysoftware developmentsymposiumtherapy developmenttoolusabilityweb appweb services
项目摘要
Project Summary
With the tremendous increase of neuroimaging data, there is a corresponding demand for usable, automated,
and robust data analysis tools. Nipype is a mature Python library for efficient and flexible analysis of Big “brain
imaging” Data. Its reusable workflows can combine algorithms from a diverse set of existing software packages
to generate reproducible results. The goal of this proposal is to further enhance the usability, functionality, and
interoperability of Nipype and to widen its dissemination. This will increase its use by researchers and
clinicians, boost its impact on biomedical research, and address many of its current limitations. Easier-to-use
automation tools can reduce errors, lead to faster biomedical discoveries, and facilitate the transition from
bench to bedside. From a software engineering standpoint, the goal is to offer a well-designed, cross-platform,
and extensible dataflow computing solution that is intuitive and easy to use.
We propose to build an interactive and intuitive web-based platform on top of the current extensive feature set
of Nipype that interoperates with existing databases, software, and other workflow services. The result will be a
generalizable, scalable, extensible, and tested infrastructure that minimizes complex programming interfaces
to easier-to-use web applications. Nipype will still retain its extensible plugin architecture behind this web-
based platform to allow continued inclusion of new software packages and algorithms, and execution on
multiple platforms. Users will be able to use the most appropriate analysis strategies for their data. This
platform will not only allow continued use of familiar software, but provide immediate exposure to the latest
software tools for data analyses. For analysis, users will have access to complete provenance allowing others to
reproduce their steps. We will interact with NeuroVault and NeuroSynth to provide a seamless transition
between data, processing, sharing, and interpreting results. Finally, to sustain such an open and collaborative
effort, we will train users and developers through hands-on workshops and webinars, encouraging them to take
advantage of an expanding ecosystem for efficient and reproducible analysis.
While the architecture will be initially deployed within the brain imaging community, we will adopt common
standards to ensure interoperability with the greater biomedical imaging community. By continuing to engage
the user community and extending the ecosystem for research computing, the project will lower the barrier for
easy and efficient computation on large datasets, with the goal of faster development of treatment options.
项目概要
随着神经影像数据的巨大增加,对可用的、自动化的、
和强大的数据分析工具。 Nipype是一个成熟的Python库,用于高效灵活地分析大“大脑”
成像”数据。其可重复使用的工作流程可以结合来自各种现有软件包的算法
产生可重复的结果。该提案的目标是进一步增强可用性、功能性和
Nipype 的互操作性并扩大其传播。这将增加研究人员和
临床医生,提高其对生物医学研究的影响,并解决其当前的许多局限性。更易于使用
自动化工具可以减少错误,加快生物医学发现,并促进从
长凳到床边。从软件工程的角度来看,目标是提供一个精心设计的、跨平台的、
直观且易于使用的可扩展数据流计算解决方案。
我们建议在当前广泛的功能集之上构建一个交互式且直观的基于网络的平台
Nipype 与现有数据库、软件和其他工作流服务进行互操作。结果将是
可通用、可伸缩、可扩展且经过测试的基础架构,可最大程度地减少复杂的编程接口
更易于使用的 Web 应用程序。 Nipype 仍将在该网络背后保留其可扩展插件架构-
基于平台,允许继续包含新的软件包和算法,并在
多个平台。用户将能够对其数据使用最合适的分析策略。这
平台不仅允许继续使用熟悉的软件,而且可以立即接触最新的软件
用于数据分析的软件工具。为了进行分析,用户将可以访问完整的出处,从而允许其他人
重现他们的步骤。我们将与 NeuroVault 和 NeuroSynth 互动以提供无缝过渡
数据、处理、共享和解释结果之间的关系。最后,为了维持这种开放和协作的氛围
我们将通过实践研讨会和网络研讨会来培训用户和开发人员,鼓励他们采取
利用不断扩大的生态系统进行高效且可重复的分析。
虽然该架构最初将部署在脑成像社区内,但我们将采用常见的
标准以确保与更大的生物医学成像社区的互操作性。通过继续参与
用户社区并扩展研究计算的生态系统,该项目将降低使用门槛
对大型数据集进行简单高效的计算,目标是更快地开发治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Satrajit Sujit Ghosh其他文献
Satrajit Sujit Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Satrajit Sujit Ghosh', 18)}}的其他基金
An extensible brain knowledge base and toolset spanning modalities for multi-species data-driven cell types
可扩展的大脑知识库和工具集,涵盖多物种数据驱动细胞类型的模式
- 批准号:
10686977 - 财政年份:2022
- 资助金额:
$ 71.25万 - 项目类别:
Nobrainer: A robust and validated neural network tool suite for imagers
Nobrainer:适用于成像仪的强大且经过验证的神经网络工具套件
- 批准号:
10021957 - 财政年份:2020
- 资助金额:
$ 71.25万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
9795271 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
10629424 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
10393510 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
9981835 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
DISSEMINATION OF CROSS-PLATFORM SOFTWARE FOR ARTIFACT DETECTION AND REGION OF INT
伪影检测和INT区域跨平台软件的传播
- 批准号:
7501200 - 财政年份:2008
- 资助金额:
$ 71.25万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 71.25万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 71.25万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 71.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 71.25万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 71.25万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 71.25万 - 项目类别:
Research Fellowships














{{item.name}}会员




