Molecular determinants of neuronal protein homeostasis through plasma membrane-localized proteasome complexes.
通过质膜定位的蛋白酶体复合物神经元蛋白质稳态的分子决定因素。
基本信息
- 批准号:9794371
- 负责人:
- 金额:$ 39.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:26S proteasomeAffectAppointmentBiochemicalBiochemistryBiologicalBiological ProcessCRISPR interferenceCalciumCell membraneCell physiologyCellsCellular biologyChemicalsComplementComplexCryoelectron MicroscopyDataDisciplineElectron MicroscopyElectrophysiology (science)EnvironmentEtiologyExtracellular SpaceFacultyFoundationsGlycoproteinsHeartHumanImageInternationalKnowledgeLeftLightMediatingMembraneMembrane ProteinsMentorshipMolecularMorphologyMutagenesisNatureNervous system structureNeurobiologyNeuronsPathologicPeptide FragmentsPeptidesPhenotypePhysiologicalPhysiologyPositioning AttributePostdoctoral FellowProcessProteasome BindingProteasome InhibitionProtein BiosynthesisProtein DynamicsProteinsProteomeProteomicsResearchResearch PersonnelResource SharingResourcesRibosomesRoleSignal TransductionSocietiesSpecific qualifier valueSpecificityStructureSystemTherapeuticTo specifyTrainingUbiquitinUncertaintyWorkZebrafishcareerfascinategenome-widehydrophilicityin vivoinhibitor/antagonistinsightmedical schoolsmulticatalytic endopeptidase complexnervous system disorderneuronal excitabilityneuropathologyneuroregulationnovelparticlepost-doctoral trainingprotein degradationproteostasisresponseribosome profilingstudent mentoringtoolvolunteer
项目摘要
PROJECT SUMMARY / ABSTRACT
Cells continuously respond to physiological signals and potentially pathological perturbations. In
response, protein synthesis and protein degradation, the latter of which is predominantly driven by the ubiquitin-
proteasome system, reciprocally remodel the intracellular proteome. The dynamics of protein turnover determine
the physiological response to a large diversity of signals or perturbations and have major ramifications on human
physiology. Indeed, over four decades of work on the ubiquitin conjugating cascade and the 26S proteasome
has elucidated essential roles for the ubiquitin-proteasome system in nearly every cellular process. The
prevailing principles in protein turnover have been that ubiquitylation is necessary for substrate tagging and that
the 26S proteasome is the only proteasome species that degrades ubiquitin-protein conjugates. Though 20S
proteasomes form the core of the 26S complex, they remain largely understudied because of a prior lack of clear
evidence for functional 20S particles in cells and no insight into 20S-specific substrate targeting. I recently
discovered a new mechanism of ubiquitin-independent protein turnover through a highly specialized 20S
proteasome that is tightly associated with neuronal plasma membranes. These neuronal membrane
proteasomes (NMPs) directly associate with ribosomes to degrade ~250-500 nascent chain substrates
independent of ubiquitylation. The NMP degrades substrates across the membrane, releasing resulting peptide
fragments into the extracellular space that induce signaling in other neurons, and therefore represents a new
mechanism of neuromodulation. Here, I propose studies that will lay the foundation necessary to understand this
new paradigm in protein turnover. In my first aim, I will identify how NMPs associate with the plasma membrane
and reveal the molecular components of this membrane complex. In the second aim, I will determine how the
specificity of NMP-mediated degradation of nascent chains is achieved. In the final aim, I will gain insights into
the biological processes that NMP-mediated degradation regulates. The proposed research is significant
because it opens a new field of research into non-canonical protein turnover in neurons. This work will generate
the tools and mechanistic insight necessary to understanding how NMP-mediated degradation is codified in and
relevant to the vertebrate nervous system. This will not only shed light onto the new mechanism of
neuromodulation through NMPs, but also provide a framework relevant to abnormalities in protein turnover that
underlie multiple human neuropathologies.
项目总结/摘要
细胞不断响应生理信号和潜在的病理扰动。在
反应,蛋白质合成和蛋白质降解,后者主要由泛素驱动,
蛋白酶体系统,从而重塑细胞内蛋白质组。蛋白质周转的动力学决定了
对各种各样的信号或扰动的生理反应,并对人类产生重大影响
physiology.事实上,在泛素结合级联和26 S蛋白酶体的40多年的研究中,
已经阐明了泛素-蛋白酶体系统在几乎每一个细胞过程中的重要作用。的
蛋白质周转的主要原则是泛素化是底物标记所必需的,
26 S蛋白酶体是唯一降解泛素-蛋白质缀合物的蛋白酶体种类。虽然20 S
蛋白酶体形成26 S复合物的核心,但由于先前缺乏明确的
细胞中功能性20 S颗粒的证据,并且没有对20 S特异性底物靶向的洞察。我最近
发现了一种新的机制,通过一个高度专业化的20 S泛素独立的蛋白质周转
与神经元质膜紧密结合的蛋白酶体。这些神经细胞膜
蛋白酶体(NMP)直接与核糖体结合,降解约250-500个新生链底物
独立于泛素化。NMP降解跨膜底物,释放所得肽
碎片进入细胞外空间,诱导其他神经元的信号传导,因此代表了一种新的
神经调节机制。在这里,我建议进行研究,为理解这一点奠定必要的基础。
蛋白质周转的新范例。在我的第一个目标中,我将确定NMPs如何与质膜结合
并揭示这种膜复合物的分子组成。在第二个目标中,我将确定如何
获得了NMP介导的新生链降解的特异性。在最后的目标中,我将深入了解
NMP介导的降解调节的生物过程。所提出的研究是有意义的
因为它开辟了一个新的研究领域,研究神经元中的非规范蛋白质周转。这项工作将产生
了解NMP介导的降解是如何编码的工具和必要的机制见解,
与脊椎动物的神经系统有关。这不仅将揭示新的机制,
通过NMPs的神经调节,而且还提供了与蛋白质周转异常相关的框架,
是多种人类神经病理学的基础
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kapil Ramachandran其他文献
Kapil Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kapil Ramachandran', 18)}}的其他基金
Molecular determinants of neuronal protein homeostasis through plasma membrane-localized proteasome complexes.
通过质膜定位的蛋白酶体复合物神经元蛋白质稳态的分子决定因素。
- 批准号:
10693907 - 财政年份:2021
- 资助金额:
$ 39.49万 - 项目类别:
Molecular determinants of neuronal protein homeostasis through plasma membrane-localized proteasome complexes.
通过质膜定位的蛋白酶体复合物神经元蛋白质稳态的分子决定因素。
- 批准号:
10018941 - 财政年份:2019
- 资助金额:
$ 39.49万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.49万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 39.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists