Molecular determinants of neuronal protein homeostasis through plasma membrane-localized proteasome complexes.
通过质膜定位的蛋白酶体复合物神经元蛋白质稳态的分子决定因素。
基本信息
- 批准号:10693907
- 负责人:
- 金额:$ 39.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:26S proteasomeAffectAgreementAppointmentBiochemicalBiochemistryBiologicalBiological ProcessCRISPR interferenceCalciumCell membraneCell physiologyCellsCellular biologyChemicalsComplementComplexCryoelectron MicroscopyDataDisciplineElectron MicroscopyElectrophysiology (science)EnvironmentEtiologyExtracellular SpaceFacultyFoundationsGlycoproteinsHeartHumanImageInstitutionInternationalKnowledgeLearningLeftLightMediatingMembraneMembrane ProteinsMentorshipMolecularMorphologyMutagenesisNatureNervous SystemNeurobiologyNeuronsPathologicPeptide FragmentsPeptidesPhenotypePhysiologicalPhysiologyPositioning AttributePostdoctoral FellowProcessProteasome BindingProteasome InhibitionProtein BiosynthesisProtein DynamicsProteinsProteomeProteomicsResearchResearch PersonnelResource SharingResourcesRibosomesRoleSignal InductionSignal TransductionSocietiesSpecific qualifier valueSpecificitySystemTherapeuticTrainingUbiquitinUbiquitinationUncertaintyWorkZebrafishcareerfascinategenome-widehydrophilicityin vivoinhibitorinsightmedical schoolsmulticatalytic endopeptidase complexnervous system disorderneuronal excitabilityneuropathologyneuroregulationnovelparticlepost-doctoral trainingprotein degradationproteostasisresponseribosome profilingstudent mentoringtoolvolunteer
项目摘要
PROJECT SUMMARY / ABSTRACT
Cells continuously respond to physiological signals and potentially pathological perturbations. In
response, protein synthesis and protein degradation, the latter of which is predominantly driven by the ubiquitin-
proteasome system, reciprocally remodel the intracellular proteome. The dynamics of protein turnover determine
the physiological response to a large diversity of signals or perturbations and have major ramifications on human
physiology. Indeed, over four decades of work on the ubiquitin conjugating cascade and the 26S proteasome
has elucidated essential roles for the ubiquitin-proteasome system in nearly every cellular process. The
prevailing principles in protein turnover have been that ubiquitylation is necessary for substrate tagging and that
the 26S proteasome is the only proteasome species that degrades ubiquitin-protein conjugates. Though 20S
proteasomes form the core of the 26S complex, they remain largely understudied because of a prior lack of clear
evidence for functional 20S particles in cells and no insight into 20S-specific substrate targeting. I recently
discovered a new mechanism of ubiquitin-independent protein turnover through a highly specialized 20S
proteasome that is tightly associated with neuronal plasma membranes. These neuronal membrane
proteasomes (NMPs) directly associate with ribosomes to degrade ~250-500 nascent chain substrates
independent of ubiquitylation. The NMP degrades substrates across the membrane, releasing resulting peptide
fragments into the extracellular space that induce signaling in other neurons, and therefore represents a new
mechanism of neuromodulation. Here, I propose studies that will lay the foundation necessary to understand this
new paradigm in protein turnover. In my first aim, I will identify how NMPs associate with the plasma membrane
and reveal the molecular components of this membrane complex. In the second aim, I will determine how the
specificity of NMP-mediated degradation of nascent chains is achieved. In the final aim, I will gain insights into
the biological processes that NMP-mediated degradation regulates. The proposed research is significant
because it opens a new field of research into non-canonical protein turnover in neurons. This work will generate
the tools and mechanistic insight necessary to understanding how NMP-mediated degradation is codified in and
relevant to the vertebrate nervous system. This will not only shed light onto the new mechanism of
neuromodulation through NMPs, but also provide a framework relevant to abnormalities in protein turnover that
underlie multiple human neuropathologies.
项目摘要/摘要
细胞不断地对生理信号和潜在的病理性扰动做出反应。在……里面
反应、蛋白质合成和蛋白质降解,后者主要由泛素-
蛋白酶体系统,相互重塑细胞内蛋白质组。蛋白质周转的动态决定了
对各种信号或干扰的生理反应,对人类有重大影响
生理学。事实上,四十多年来对泛素结合级联和26S蛋白酶体的研究
阐明了泛素-蛋白酶体系统在几乎每一个细胞过程中的重要作用。这个
蛋白质周转的主要原则是泛素化是底物标记所必需的,而且
26S蛋白酶体是唯一能降解泛素-蛋白质结合物的蛋白酶体。虽然是20多岁
蛋白酶体构成了26S复合体的核心,由于之前缺乏明确的研究,它们在很大程度上仍然没有得到充分的研究
有证据表明细胞中存在功能正常的20S颗粒,但没有深入了解20S特定的底物靶向。我最近
发现了一种通过高度专业化的20多岁的泛素不依赖的蛋白质周转的新机制
与神经细胞质膜密切相关的蛋白酶体。这些神经细胞膜
蛋白酶体(NMP)直接与核糖体结合,降解~250-500个新生链底物
不依赖泛素化。NMP通过膜降解底物,释放产生的多肽
碎片进入细胞外空间,在其他神经元中诱导信号传递,因此代表着一种新的
神经调节机制。在这里,我提出的研究将为理解这一点奠定必要的基础
蛋白质周转的新范式。在我的第一个目标中,我将确定NMP如何与质膜相关联
并揭示了这种膜复合体的分子组成。在第二个目标中,我将确定如何
实现了NMP介导的初生链降解的特异性。在最终目标中,我将深入了解
NMP介导的降解调节的生物过程。这项拟议的研究具有重要意义
因为它开启了研究神经元中非标准蛋白质周转的新领域。这项工作将产生
了解NMP介导的降解是如何在和
与脊椎动物神经系统相关。这不仅将揭示新的机制
通过NMP进行神经调节,但也提供了与蛋白质周转异常相关的框架,
是多种人类神经病变的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kapil Ramachandran其他文献
Kapil Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kapil Ramachandran', 18)}}的其他基金
Molecular determinants of neuronal protein homeostasis through plasma membrane-localized proteasome complexes.
通过质膜定位的蛋白酶体复合物神经元蛋白质稳态的分子决定因素。
- 批准号:
9794371 - 财政年份:2019
- 资助金额:
$ 39.92万 - 项目类别:
Molecular determinants of neuronal protein homeostasis through plasma membrane-localized proteasome complexes.
通过质膜定位的蛋白酶体复合物神经元蛋白质稳态的分子决定因素。
- 批准号:
10018941 - 财政年份:2019
- 资助金额:
$ 39.92万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Studentship














{{item.name}}会员




