Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
基本信息
- 批准号:8650290
- 负责人:
- 金额:$ 31.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-23 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:Antifungal AgentsAttenuatedCell SurvivalCell WallCellsCodeComplexDNA-Directed RNA PolymeraseDevelopmentDrug TargetingElongation FactorEnvironmentFailureGene ExpressionGene SilencingGene TargetingGenesGenetic TranscriptionGoalsHandHumanLinkMAP Kinase GeneMAPK7 geneMediatingMitogen-Activated Protein KinasesModelingMutateOrthologous GenePharmaceutical PreparationsPhosphotransferasesPhysiologicalPolymeraseProcessProtein KinaseRNA Polymerase IIRecruitment ActivityRoleSaccharomyces cerevisiaeSeriesSignal PathwaySignal TransductionStressSystemTestingTherapeuticTranscription InitiationTranscription ProcessTranscriptional ActivationTranscriptional RegulationYeastsattenuationbaseextracellulargene functiongenetic selectionhistone modificationnovelnovel strategiesprematurepromoterresponsesmall moleculetermination factortranscription factortranscription termination
项目摘要
DESCRIPTION (provided by applicant): Cell survival depends on the ability to respond to stress signals from the extracellular environment. Diverse stress signals induce the expression of specific genes that function in the physiologic response to the stress. In the absence of stress, expression of many of these genes is maintained at a minimal level. We have found in the yeast S. cerevisiae, a model eukaryotic system, that the basal expression of many stress-induced genes is minimized by a novel mechanism - premature transcriptional termination, or transcriptional attenuation. Genes induced by cell wall stress require the MAP kinase Mpk1 to carry out two separate steps in the transcription process, neither of which requires its protein kinase activity. The first is to recruit a transcription factor to promoters of target genes. The second involves blocking attenuation, which occurs within the promoter-proximal region of target genes under non-inducing conditions. Attenuation is mediated by the Sen1 termination complex and is blocked by the translocation of Mpk1 to the elongating RNA polymerase (Pol II). Under inducing conditions, gene expression depends upon the relief of attenuation. For Mpk1-induced genes, this happens through the association of Mpk1 with the elongation factor Paf1, which blocks the recruitment of the Sen1 complex to Pol II. This interaction is conserved in the human ortholog of Mpk1, ERK5, suggesting that regulated transcriptional attenuation operates in humans. Based on our preliminary findings, we propose that a wide variety of stress-induced genes are silenced by transcriptional attenuation under non-inducing conditions and that a constellation of transcription factors are likely to relieve attenuation under inducing conditions through interactions with the Paf1C (a complex containing Paf1). The long-term objective of this project is to provide a novel approach to blocking the expression of specific genes, or groups of genes, by inhibiting relief of transcriptional attenuation. We propose to elucidate the mechanisms that regulate transcriptional attenuation and the degree to which various stresses use similar or different attenuation-relief factors to regulate a variety of target genes. One immediate goal will be to determine if other MAP kinases that respond to different signals also function as attenuation-relief factors. Another project will identify non-MAP kinase attenuation- relief factors that allow the induction of a variety of stress-induced genes we have found to be under attenuation control. A third goal will be to understand the role of the Paf1C in the recruitment of the Sen1 termination complex to Pol II. Overall, these studies will yield a mechanistic understanding of regulated transcriptional attenuation and reveal the ubiquity of the process in yeast, which will inform subsequent studies on human cells.
描述(由申请人提供):细胞存活取决于对细胞外环境压力信号的反应能力。不同的应激信号诱导特定基因的表达,这些基因在应激的生理反应中发挥作用。在没有压力的情况下,这些基因中的许多基因的表达都保持在最低水平。我们在酿酒酵母这个真核系统的模型中发现,许多应激诱导基因的基础表达通过一种新的机制-提前转录终止或转录减弱而被最小化。细胞壁应激诱导的基因需要MAP激酶Mpk1在转录过程中执行两个独立的步骤,这两个步骤都不需要它的蛋白激酶活性。第一种是招募一种转录因子作为目标基因的启动子。第二个涉及阻断衰减,这发生在非诱导条件下目标基因的启动子-近端区域。衰减是由Sen1终止复合体介导的,并被Mpk1到延伸RNA聚合酶(POL II)的易位所阻断。在诱导条件下,基因的表达依赖于衰减的缓解。对于Mpk1诱导的基因,这是通过Mpk1与延伸因子Paf1的关联发生的,Paf1阻止Sen1复合体招募到Pol II。这种相互作用在人类Mpk1的同源基因ERK5中保守,表明调节的转录衰减在人类中起作用。根据我们的初步发现,我们认为在非诱导条件下,许多胁迫诱导的基因都被转录衰减所沉默,并且一系列转录因子可能通过与Paf1C(一种含有Paf1的复合体)的相互作用来缓解诱导条件下的转录衰减。该项目的长期目标是提供一种新的方法,通过抑制转录衰减的缓解来阻断特定基因或基因组的表达。我们建议阐明调节转录衰减的机制,以及不同的胁迫在多大程度上利用相似或不同的衰减缓解因子来调节各种靶基因。一个直接的目标将是确定其他对不同信号做出反应的MAP激酶是否也起到了缓解衰减的作用。另一个项目将确定非MAPK衰减缓解因子,这些因子允许诱导我们发现处于衰减控制下的各种应激诱导基因。第三个目标是了解Paf1C在Sen1终止复合体被招募到Pol II中的作用。总体而言,这些研究将从机制上理解受调控的转录衰减,并揭示这一过程在酵母中的普遍存在,这将为后续的人类细胞研究提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID E. LEVIN其他文献
DAVID E. LEVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID E. LEVIN', 18)}}的其他基金
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8842660 - 财政年份:2012
- 资助金额:
$ 31.1万 - 项目类别:
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8339240 - 财政年份:2012
- 资助金额:
$ 31.1万 - 项目类别:
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8514017 - 财政年份:2012
- 资助金额:
$ 31.1万 - 项目类别:
A SCREEN FOR NOVEL MPK1 KINASE DOMAIN BINDING PROTEINS
新型 MPK1 激酶结构域结合蛋白的筛选
- 批准号:
7957700 - 财政年份:2009
- 资助金额:
$ 31.1万 - 项目类别:
RIN1, A NOVEL RAS-INHIBITORY PROTEIN IN YEAST
RIN1,酵母中一种新型 RAS 抑制蛋白
- 批准号:
6890919 - 财政年份:2003
- 资助金额:
$ 31.1万 - 项目类别:
相似海外基金
A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
- 批准号:
24K02286 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
- 批准号:
2420924 - 财政年份:2024
- 资助金额:
$ 31.1万 - 项目类别:
Standard Grant
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Protecting Pigs From Enzootic Pneumonia: Rational Design Of Safe Attenuated Vaccines.
保护猪免受地方性肺炎:安全减毒疫苗的合理设计。
- 批准号:
BB/X017540/1 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Research Grant
A “Goldilocks” live attenuated poultry vaccine for Infectious Coryza
用于传染性鼻炎的“Goldilocks”家禽减毒活疫苗
- 批准号:
LP210301365 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Linkage Projects
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
- 批准号:
10730832 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Combating melanoma with an attenuated bacterial therapeutic
用减毒细菌疗法对抗黑色素瘤
- 批准号:
10659841 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
L2M NSERC-Bioengineering attenuated Sclerotinia sclerotiorum strains as bioherbicide for cereal production and lawn management
L2M NSERC-生物工程减毒核盘菌菌株作为谷物生产和草坪管理的生物除草剂
- 批准号:
576545-2022 - 财政年份:2022
- 资助金额:
$ 31.1万 - 项目类别:
Idea to Innovation
Investigating Host and Viral Factors for Improved Design of Future Live Attenuated Vaccines for IBV
研究宿主和病毒因素以改进未来 IBV 减毒活疫苗的设计
- 批准号:
BB/V016067/1 - 财政年份:2022
- 资助金额:
$ 31.1万 - 项目类别:
Research Grant














{{item.name}}会员




