Neuroimaging of dynamic navigational codes
动态导航代码的神经影像
基本信息
- 批准号:9166218
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAlzheimer&aposs DiseaseAnimal ModelAnimalsArchitectureBehaviorBrainBrain regionCitiesCodeCognitionCognitiveComplexCuesData SetDiagnosisDiseaseElectrophysiology (science)EnvironmentEpisodic memoryFoundationsFunctional Magnetic Resonance ImagingFutureHealthHippocampus (Brain)HumanImage AnalysisImaginationIndividualInvestigationKnowledgeLearningLiteratureLocationLocomotionMapsMeasurementMedialMediatingMemoryMethodsModelingMovementNeurocognitiveNeurodegenerative DisordersOrganismParietal LobeParticipantPerformancePhysiologicalPhysiologyPositioning AttributeProblem SolvingPsyche structureRoboticsRodentRouteSensorySignal TransductionStimulusStrokeStructureSystemTemporal LobeTestingTimeTrainingVisionWorkbaseblood oxygen level dependentcognitive functioncognitive processhemodynamicsinnovationmeetingsmovieneuroimagingneuromechanismnonhuman primatenovelreconstructionrehabilitation strategyrelating to nervous systemresponsetoolvirtualvirtual realityway finding
项目摘要
Project Summary:
Spatial navigation is a challenge that must be met by all mobile organisms. Although much is
known about the neural mechanisms that underlie spatial navigation in animals, the
neurocognitive basis of spatial navigation in humans is much less clear. This is partly because of
technical limitations: the best tool currently available for noninvasive measurement of brain
activity is functional magnetic resonance imaging (fMRI), but traditional fMRI analysis methods
are not well-suited for identifying representations elicited in dynamic, naturalistic situations
such as unconstrained navigational episodes. The current project will attempt to overcome this
limitation by using a recent technical innovation in fMRI analysis—voxel-wise encoding
modeling—to identify the neural representations that mediate active navigation. Specifically, we
will model the fMRI response during navigation within a virtual-reality city in terms of the
spatial variables that are known to have known cellular coordinates correlates in rodents and
non-human primates, and we will then evaluate the model by testing whether it predicts fMRI
response in a held-out dataset not used to train the model. Additionally, we will explore whether
the representations thus revealed suffice to solve the problem of simultaneous localization and
mapping (SLAM); that is, whether they allow one to keep track of one's position during
exploration of a novel environment while simultaneously learning its layout. Aim 1 is to build
the voxel-wise encoding model and to use it to identify the neural representations within specific
brain regions that mediate dynamic navigation. Aim 2 is to examine generalization across
environments by testing whether a model trained in one virtual environment suffices to solve
the problem of SLAM in another. If successful, we anticipate that this project will have a major
and sustained impact on the field by achieving a quantitative description of how spatial
information is encoded in multiple regions of the human brain during dynamic real-time
navigation. This will allow us to test specific hypotheses about spatial representations developed
from the animal literature, and potentially allow this literature to be leveraged to better
understand multiple cognitive functions that rely on the same underlying neural architecture,
including spatial cognition, episodic memory, and imagination. Moreover, this project will
provide the essential technical foundation for future tests of novel hypotheses about the
physiological basis of navigation.
项目概要:
空间导航是所有移动的生物体必须面对的挑战。虽然很多
已知动物空间导航的神经机制,
人类空间导航的神经认知基础还不太清楚。这部分是因为
技术限制:目前可用于无创测量大脑的最佳工具
活动是功能磁共振成像(fMRI),但传统的fMRI分析方法
不太适合识别在动态的、自然的情况下引出的表征
例如不受约束的导航片段。目前的项目将试图克服这一点
使用fMRI分析中的最新技术创新-逐体素编码的限制
建模-以识别介导主动导航的神经表征。我们特别
将模拟功能磁共振成像响应期间导航在一个虚拟现实的城市方面,
已知具有已知细胞坐标的空间变量在啮齿动物中相关,
然后我们将通过测试该模型是否预测功能磁共振成像来评估该模型
不用于训练模型的保留数据集中的响应。此外,我们还将探讨
这样揭示的表示足以解决同时定位的问题,
地图(SLAM);也就是说,它们是否允许一个人在
探索一个新的环境,同时学习它的布局。目标1:建立
体素编码模型,并使用它来识别特定的神经表征
调节动态导航的大脑区域。目的2是检查泛化跨越
通过测试在一个虚拟环境中训练的模型是否足以解决
另一个是SLAM的问题。如果成功,我们预计该项目将有一个重大的
对实地的影响和持续影响,
信息在动态实时期间被编码在人脑的多个区域中
导航这将使我们能够测试有关空间表征的特定假设
从动物文献中,并可能允许利用这些文献,以更好地
理解依赖于相同的底层神经结构的多种认知功能,
包括空间认知、情景记忆和想象力。此外,该项目将
为未来测试有关的新假设提供必要的技术基础。
航海的生理基础
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUSSELL A EPSTEIN其他文献
RUSSELL A EPSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUSSELL A EPSTEIN', 18)}}的其他基金
Adaptation and multivoxel codes in high-level visual cortex
高级视觉皮层的适应和多体素编码
- 批准号:
8622198 - 财政年份:2013
- 资助金额:
$ 20.13万 - 项目类别:
Adaptation and multivoxel codes in high-level visual cortex
高级视觉皮层的适应和多体素编码
- 批准号:
8510186 - 财政年份:2013
- 资助金额:
$ 20.13万 - 项目类别:
Place Representations in the Human Visual System
将表征放入人类视觉系统中
- 批准号:
7882900 - 财政年份:2009
- 资助金额:
$ 20.13万 - 项目类别:
Place Representations in the Human Visual System
将表征放入人类视觉系统中
- 批准号:
7386605 - 财政年份:2006
- 资助金额:
$ 20.13万 - 项目类别: