Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
基本信息
- 批准号:9513867
- 负责人:
- 金额:$ 277.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-06 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAdoptedAffectAnimalsAplysiaAutonomic ganglionAutonomic nervous systemAutonomic nervous system disordersCalciumCell physiologyCellsChronicClinicalCollectionComplexDataDevelopmentDevicesDiffusionDigestionDiseaseElectrophysiology (science)EnvironmentFrequenciesFutureGangliaGrantHeart RateImageImaging technologyIn VitroInvestigationIon ChannelKnowledgeLaboratoriesLasersLeadLightLightingLocationMapsMethodsMicroscopeModalityModelingMolecularMusNerveNeuronsNodose GanglionOptical Coherence TomographyOpticsOutcomePatternPeripheralPeripheral Nervous SystemPharmaceutical PreparationsPharmacologyPhysicsPhysiologic pulsePhysiologicalPlayPolymersPositioning AttributePreparationRattusReproducibilityResolutionResourcesRespirationRoleSafetySamplingSignal TransductionSiteSpace ExplorationsSpeedStaining methodStainsStructureSurgeonSystemTechniquesTechnologyTemperatureTestingTimeTissuesVisceralWidthWorkclinically relevantdesigndesign and constructionexperimental studyflexibilityganglion cellgenetic manipulationimaging systemimplantationimprovedmicromanipulatorminiaturizeneuroregulationneurotransmissionnew technologynoveloptical fiberpatch clamppressurerelating to nervous systemresponsespatiotemporaltechnology developmenttooltwo-photon
项目摘要
Project Summary
In recent years, it has been become clear that modulating the peripheral nervous system has great potential for
treating diseases. To realize this potential, a new neuromodulation modality is needed that is safe, highly specific,
and rapidly reversible. We have recently shown that infrared neuromodulation (IRN) when applied to peripheral
structures such as the nodose ganglion induces unique patterns of physiological responses that cannot be
elicited by electrical current or drugs. The nodose ganglion plays an important role in regulating many critical
autonomic functions, and IRN application has unmasked a functional organization for different sub-regions of
the ganglion that has not been previously described. These results suggest that IRN has enormous potential for
mapping the topology of functional responses in ganglia, decoding ganglionic circuitry, and as a clinical
neuroceutical device. IRN stimulates neural activity by inducing a brief spatiotemporal temperature gradient or
inhibits activity by increasing the baseline temperature. We propose to advance IRN and imaging technology in
the following ways. First, we will to create new devices to efficiently and precisely deliver IR light to nerves and
ganglia in animals. New devices include flexible polymer waveguides that can deliver light to multiple locations
while conforming and moving freely with the target tissue, a ganglia tracking system that can identify the
orientation of the nodose ganglion and precisely control IR illumination patterns on the ganglia for mapping
function, and advanced calcium imaging systems that can do volumetric imaging of ganglionic activity and
imaging in living animals. Second, we will assess the safety, selectivity, and repeatability of IRN. Third, we will
develop a deep understanding of how IRN works by conducting mechanistic studies that include creating
sophisticated models of IRN’s effect on electrophysiology and experiments to test our hypotheses. Fourth,
because IRN has unmasked a spatial organization to ganglionic function, we will be able to map this organization
in detail and provide an unprecedented understanding of ganglionic function. The tools and knowledge gained
in this grant will not only help determine the potential of IRN, but be beneficial to a host of future neuromodulation
and other applications.
项目概要
近年来,人们已经清楚调节周围神经系统在治疗疾病方面具有巨大潜力。
治疗疾病。为了实现这一潜力,需要一种安全、高度特异性、
并且可快速逆转。我们最近表明,红外神经调节(IRN)应用于外周
诸如结状神经节之类的结构会引起独特的生理反应模式,而这些模式是无法被预测的。
由电流或药物引起。结状神经节在调节许多关键的神经节中发挥着重要作用
自主功能,IRN 应用揭示了不同子区域的功能组织
以前没有描述过的神经节。这些结果表明 IRN 具有巨大的潜力
绘制神经节功能反应的拓扑结构,解码神经节电路,并作为临床
神经治疗装置。 IRN 通过诱导短暂的时空温度梯度或
通过增加基线温度来抑制活动。我们建议推进 IRN 和成像技术
有以下几种方式。首先,我们将创造新的设备,以高效、精确地将红外光传递到神经和神经系统。
动物的神经节。新设备包括柔性聚合物波导,可以将光传输到多个位置
在与目标组织一致并自由移动的同时,神经节跟踪系统可以识别目标组织
结状神经节的方向并精确控制神经节上的红外照明模式以进行绘图
功能和先进的钙成像系统,可以对神经节活动进行体积成像
活体动物成像。其次,我们将评估 IRN 的安全性、选择性和可重复性。第三,我们将
通过进行机械研究(包括创建
IRN 对电生理学影响的复杂模型和实验来检验我们的假设。第四,
因为 IRN 揭示了神经节功能的空间组织,我们将能够绘制该组织的图
详细并提供对神经节功能前所未有的了解。获得的工具和知识
这笔资助不仅有助于确定 IRN 的潜力,而且有利于未来的许多神经调节
和其他应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL W. JENKINS其他文献
MICHAEL W. JENKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL W. JENKINS', 18)}}的其他基金
Understanding neural control of the ocular surface
了解眼表的神经控制
- 批准号:
10586931 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
Understanding neural control of the ocular surface
了解眼表的神经控制
- 批准号:
10707246 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
10004289 - 财政年份:2017
- 资助金额:
$ 277.24万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
9930180 - 财政年份:2017
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10593074 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10374932 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Hemodynamics in the Development of Congenital Heart Defects
评估血流动力学在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
8985102 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10211096 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 277.24万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 277.24万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 277.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 277.24万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 277.24万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 277.24万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 277.24万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 277.24万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 277.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




