Modeling of kinetic processes in biological systems

生物系统动力学过程建模

基本信息

项目摘要

Dynamics of multisite phosphorylation. Multi-site phosphorylation dynamics is usually interpreted in terms of the processive and distributive mechanisms, which, in fact, are special limiting cases of the general phosphorylation dynamics. We study the phosphorylation dynamics in general, focusing on how these limiting cases arise for the special choice of the parameters Diffusion-limited trapping by patchy surfaces. In biological systems, diffusing solutes are typically trapped by active sites on the otherwise reflecting surfaces. We study trapping by patchy surfaces focusing on how the trapping rate depends on the patch surface fraction. Collective growth in simple cell networks. We study collective growth in a simple cell network with the goal to rationalize why different cells of the network grow with different rates. Non-trivial effects of the substrate dissociation rate on the enzymatic velocity. Based on general arguments, it was recently proposed that the enzymatic velocity can be increased by increasing the substrate dissociation rate. We study a general model of the multistate enzyme dynamics with the goal to specify the conditions under which such acceleration of the enzymatic reaction can occur. Bulk-mediated surface transport. We study surface transport of solute molecules which are allowed to dissociate from the surface and then come back. Our goal was to understand the origin of the anomalous subdiffusion of the molecules in such systems reported by different groups. Effect of stochastic gating on channel-facilitated membrane transport. Although stochastic gating in channel-facilitated membrane transport has been studied for many decades, there is no theory that explains how the solute flux through the channel depends on that gating rate and the solute dynamics in the channel. We developed such a theory which shows that significant deviations from the common sense expectation may occur at fast gating if the gating rate becomes comparable with the rate of the solute passage through the channel.
多位点磷酸化动力学。 多位点磷酸化动力学通常用进行性和分布性机制来解释,这实际上是一般磷酸化动力学的特殊极限情况。我们一般地研究了磷酸化动力学,重点是这些极限情况是如何发生的,因为参数的特殊选择 由片状表面限制扩散的陷阱。 在生物系统中,扩散的溶质通常被反射表面上的活性中心捕获。我们研究了斑块表面的俘获,重点研究了捕获率如何依赖于斑块表面的分数。 简单细胞网络中的集体生长。 我们研究简单细胞网络中的集体生长,目的是合理解释为什么网络中不同的细胞以不同的速度生长。 底物解离速率对酶速度的影响不是很小。 基于一般的争论,最近有人提出可以通过增加底物解离速率来提高酶的速度。我们研究了多态酶动力学的一般模型,目的是明确这种酶反应加速发生的条件。 散装介导的表面运输。 我们研究溶质分子的表面传输,这些分子被允许从表面解离,然后又回来。我们的目标是了解不同研究小组报告的这类系统中分子异常次扩散的起源。 随机门控对通道促进膜转运的影响。 尽管通道促进的膜传输中的随机门控已经被研究了几十年,但还没有理论来解释通过通道的溶质通量如何依赖于该门控速率和通道中的溶质动力学。我们发展了这样一个理论,它表明,如果门控速率与溶质通过通道的速率相当,则在快速门控时可能会出现显著偏离常识预期的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Berezhkovskii其他文献

Alexander Berezhkovskii的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Berezhkovskii', 18)}}的其他基金

Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    8565489
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    10255221
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    8148484
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    7966736
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    7733767
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    8746531
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    10008638
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    9344082
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:
Modeling of kinetic processes in biological systems
生物系统动力学过程建模
  • 批准号:
    8941408
  • 财政年份:
  • 资助金额:
    $ 20.15万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了