A Model Averaging Approach to Causal Inference in Substance Abuse Prevention Research

药物滥用预防研究中因果推理的模型平均方法

基本信息

  • 批准号:
    9293998
  • 负责人:
  • 金额:
    $ 28.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT A Model Averaging Approach to Causal Inference in Substance Abuse Prevention Research Many evaluations of school-based preventions for alcohol and other drugs (AOD) use are either observational by design or by implementation given noncompliance and dropouts. The observational nature of prevention studies is a major challenge to researchers trying to understand an intervention's effectiveness because of the serious threats of selection and confounding biases (i.e., individuals who receive more of the intervention are often very different from those who receive less). This application proposes a three-year R01 study to develop a novel causal inference approach using model averaging that will provide a more robust solution than current approaches to this major methodological problem in prevention research. The Rubin Causal Model (RCM) is a general framework for causal inference with studies in which randomization is not possible or is compromised by implementation difficulties. While classic statistical techniques can be severely biased when the distribution of confounding variables differ between treated and control individuals, the RCM can reduce such biases from effectiveness estimates. NIDA has made the continued development of methods under the RCM framework a high research priority. Currently, a major difficulty for practitioners is to choose among the numerous RCM available approaches. A preliminary review suggests that more than 40 distinct RCM approaches have been proposed. Further, numerical and empirical studies show that the conclusions across methods can be highly variable and that many distinct approaches have been recommended by different authors. Thus, the most recommendable RCM approach for a specific application is often uncertain. To address this challenge, we propose to develop a novel model averaging approach to causal inference. When there are many candidate estimators, the optimal model averaging estimator has been shown to offer the best statistical efficiency among all candidate estimators and eliminate sensitivity from model choice. Despite their key advantages, model averaging methods for causal effects have not been thoroughly investigated in the literature to tackle the issue of choosing an RCM approach. We propose to develop causal inference model averaging methodology and develop a software tool to implement the new method. We will evaluate practical advantages of the method in numerical studies and in an application study evaluating the effectiveness of CHOICE, a prominent school-based prevention for AOD use.
项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bing Han其他文献

Bing Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bing Han', 18)}}的其他基金

A Model Averaging Approach to Causal Inference in Substance Abuse Prevention Research
药物滥用预防研究中因果推理的模型平均方法
  • 批准号:
    9174042
  • 财政年份:
    2016
  • 资助金额:
    $ 28.54万
  • 项目类别:
A Novel Casual Difference-in-differences Method to Study the Medical Home Effects
一种研究医疗家居效应的新颖的因果双重差分法
  • 批准号:
    8766425
  • 财政年份:
    2014
  • 资助金额:
    $ 28.54万
  • 项目类别:

相似海外基金

Antecedents of Adult Physical Health and Cognitive Risks for Alzheimer's Disease and Related Dementias (ADRD) in Adolescent Family Experiences: A Prospective, Longitudinal Adoption Study
青少年家庭经历中成人身体健康和阿尔茨海默氏病及相关痴呆症 (ADRD) 认知风险的前因:一项前瞻性、纵向收养研究
  • 批准号:
    10464655
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
Antecedents of Adult Physical Health and Cognitive Risks for Alzheimer's Disease and Related Dementias (ADRD) in Adolescent Family Experiences: A Prospective, Longitudinal Adoption Study
青少年家庭经历中成人身体健康和阿尔茨海默氏病及相关痴呆症 (ADRD) 认知风险的前因:一项前瞻性、纵向收养研究
  • 批准号:
    10630366
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
Adolescent Primary Care Adoption of Substance Use SBI
青少年初级保健药物使用 SBI
  • 批准号:
    6952450
  • 财政年份:
    2004
  • 资助金额:
    $ 28.54万
  • 项目类别:
Adolescent Primary Care Adoption of Substance Use SBI
青少年初级保健药物使用 SBI
  • 批准号:
    6861561
  • 财政年份:
    2004
  • 资助金额:
    $ 28.54万
  • 项目类别:
Adoption and Implementation of Adolescent EBT State-Wide
全州范围内青少年 EBT 的采用和实施
  • 批准号:
    6741059
  • 财政年份:
    2003
  • 资助金额:
    $ 28.54万
  • 项目类别:
Adoption and Implementation of Adolescent EBT State-Wide
全州范围内青少年 EBT 的采用和实施
  • 批准号:
    6929083
  • 财政年份:
    2003
  • 资助金额:
    $ 28.54万
  • 项目类别:
Adoption and Implementation of Adolescent EBT State-Wide
全州范围内青少年 EBT 的采用和实施
  • 批准号:
    6806541
  • 财政年份:
    2003
  • 资助金额:
    $ 28.54万
  • 项目类别:
LONGITUDINAL ADOPTION STUDY OF ADOLESCENT SUBSTANCE EXPERIMENTATION
青少年物质实验的纵向采用研究
  • 批准号:
    6335012
  • 财政年份:
    2000
  • 资助金额:
    $ 28.54万
  • 项目类别:
LONGITUDINAL ADOPTION STUDY OF ADOLESCENT SUBSTANCE EXPERIMENTATION
青少年物质实验的纵向采用研究
  • 批准号:
    6104174
  • 财政年份:
    1999
  • 资助金额:
    $ 28.54万
  • 项目类别:
LONGITUDINAL ADOPTION STUDY OF ADOLESCENT SUBSTANCE EXPERIMENTATION
青少年物质实验的纵向采用研究
  • 批准号:
    6270052
  • 财政年份:
    1998
  • 资助金额:
    $ 28.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了