Bioinformatics and Biostatistics Core
生物信息学和生物统计学核心
基本信息
- 批准号:9491776
- 负责人:
- 金额:$ 42.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AllelesBenchmarkingBioinformaticsBiologyBiometryBiostatistics CoreCollaborationsCommunitiesComplementComplementary DNAComputational BiologyDataData AnalysesData DiscoveryData QualityData SetData SourcesDatabasesDevelopmentDoctor of PhilosophyEventExperimental DesignsFutureGenomicsGoalsHigh Performance ComputingHumanImageryIndividualLabelLibrariesLinkMessenger RNAMethodsModelingNational Institute of Drug AbuseNatureNetwork-basedNeurosciencesOnline SystemsOntologyPathway AnalysisPeptidesPostdoctoral FellowProtein IsoformsProteinsProteomeProteomicsRNARNA EditingResearchResearch DesignResearch PersonnelRodentSamplingSequence AlignmentSourceSpeedStandardizationStatistical Data InterpretationTissuesTraining and EducationTranscriptValidationVariantWorkanalytical methodbasecell typecomplement pathwaycomputing resourcesdata visualizationdatabase querydifferential expressionexperimental studygenomic datagraduate studentinformation frameworkmembermultidisciplinarymultiple reaction monitoringneuroproteomicsnext generationnonhuman primatenovelopen sourceprogramsprotein aminoacid sequenceprotein expressionrepositorytooltranscriptome sequencingtranscriptomicsweb interface
项目摘要
Bioinformatics and Biostatistics Core (BBC): Project Summary
1. Our bioinformatics effort will support the overall goals of the Center via the following.
a) Integrate proteomic, transcriptomic, and genomic data to allow isoform-level interrogation of the
proteome.
b) Provide an isoform-centric database of mRNA and protein abundance in rodent, and extend to non-
human primate, and human species.
c) Integrate data across individuals, conditions, and species through the development of multi-level
network analyses to complement pathway-level analyses.
2. The proposed biostatistics efforts include the following components.
a) Provide statistical guide for current and future experimental design, sample quality assessment,
exploratory analysis, and visualization for proteomics data including label-free, multiple reaction
monitoring, and data-independent acquisition.
b) Develop a downstream statistical analysis framework for MS/proteomics data that includes data
normalization and significance analysis of differentially expressed proteins or peptides.
c) Construct an automated web-based analysis pipeline in collaboration with the YPED team.
3. We will make the following improvements to the Yale Protein Expression Database (YPED).
a) Incorporate into the web interface new types of proteomics data and associated data analyses.
b) Collaborate with the Bioinformatics and Biostatistics teams to incorporate new data results obtained
using their new analysis pipelines for LC-MRM, SWATH and RNA-Seq.
c) Link YPED to external data sources via interoperation with Neuroscience Information Framework (NIF).
Use NIF ontologies to standardize YPED data annotation and facilitate integration with RNA-seq data.
d) Expand the YPED repository (the public portion of YPED) to enable more rapid dissemination of a wider
variety of types of proteomics data to the scientific community.
4. The high performance computing (HPC) resource provides the following support.
a) Provide continued support of large-scale peptide sequence alignment and support novel pipelines to
integrate genomic, transcriptomic, and proteomic datasets.
b) Work closely with the database, bioinformatics, and biostatistics teams to help benchmark, scale,
optimize, and speed up computing tasks involving large-scale MS data.
c) Develop open-source proteomics pipelines (e.g., Skyline) in HPC settings.
5. Training and Education of Graduate students and Postdoctoral Fellows.
生物信息学和生物统计学核心 (BBC):项目摘要
1. 我们的生物信息学工作将通过以下方式支持中心的总体目标。
a) 整合蛋白质组、转录组和基因组数据,以允许对异构体水平进行询问
蛋白质组。
b) 提供啮齿动物中以异构体为中心的 mRNA 和蛋白质丰度数据库,并扩展到非
人类灵长类动物和人类物种。
c) 通过开发多层次的方法来整合跨个人、条件和物种的数据
网络分析以补充路径层面的分析。
2. 拟议的生物统计工作包括以下组成部分。
a) 为当前和未来的实验设计、样品质量评估提供统计指导,
蛋白质组学数据的探索性分析和可视化,包括无标记、多重反应
监控和数据独立采集。
b) 为 MS/蛋白质组数据开发下游统计分析框架,其中包括数据
差异表达蛋白质或肽的标准化和显着性分析。
c) 与 YPED 团队合作构建基于网络的自动化分析管道。
3. 我们将对耶鲁蛋白表达数据库(YPED)进行以下改进。
a) 将新型蛋白质组数据和相关数据分析纳入网络界面。
b) 与生物信息学和生物统计学团队合作,整合获得的新数据结果
使用其新的 LC-MRM、SWATH 和 RNA-Seq 分析流程。
c) 通过与神经科学信息框架 (NIF) 的互操作将 YPED 连接到外部数据源。
使用 NIF 本体标准化 YPED 数据注释并促进与 RNA-seq 数据的集成。
d) 扩展 YPED 存储库(YPED 的公共部分),以便更快速地传播更广泛的内容
向科学界提供各种类型的蛋白质组学数据。
4. 高性能计算(HPC)资源提供以下支持。
a) 为大规模肽序列比对提供持续支持,并支持新的管道
整合基因组、转录组和蛋白质组数据集。
b) 与数据库、生物信息学和生物统计学团队密切合作,帮助进行基准测试、规模化、
优化并加速涉及大规模 MS 数据的计算任务。
c) 在 HPC 设置中开发开源蛋白质组学管道(例如 Skyline)。
5.研究生、博士后的培养和教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEI-HOI CHEUNG其他文献
KEI-HOI CHEUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEI-HOI CHEUNG', 18)}}的其他基金
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 42.47万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Studentship
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Continuing Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
QUARREFOUR - Benchmarking Multi-core Quantum Computing Systems
QUARREFOUR - 多核量子计算系统基准测试
- 批准号:
10074653 - 财政年份:2023
- 资助金额:
$ 42.47万 - 项目类别:
Collaborative R&D














{{item.name}}会员




