Automated Assessment of White Matter Integrity in TBI Using Machine Learning
使用机器学习自动评估 TBI 中白质完整性
基本信息
- 批准号:9281656
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAfghanistanAlgorithmsAlzheimer&aposs DiseaseAnisotropyBehavioralBiological MarkersBlast CellBlast InjuriesBrainBrain InjuriesBrain regionChronicClassificationCognitiveComputer softwareConflict (Psychology)DataDetectionDevelopmentDiagnosisDiffuseDiffusion Magnetic Resonance ImagingDiseaseExtracellular SpaceFiberFreedomGoalsHead and neck structureImageIndividualInjuryInterventionIraqJointsLinkMachine LearningMagnetic Resonance ImagingMeasuresMilitary PersonnelMissionMorbidity - disease rateMyelinNatureNerveNervous System TraumaNeuronsNeuropsychologyOutcomeOutcome MeasureOutputParticipantPathologic ProcessesPathologyPathway interactionsPatientsPatternPerformancePopulationPrincipal Component AnalysisProbabilityProceduresProcessQuestionnairesRadialRecording of previous eventsRegression AnalysisReportingRetrospective StudiesSamplingScanningSensitivity and SpecificitySeveritiesSiteSkeletonSwellingSystemTrainingTraining SupportTraumaTraumatic Brain InjuryValidationVeteransWarWeightWorkaccurate diagnosisbasecognitive testingcohortcombatcostdaily functioningdepressive symptomsdesigndisabilityexperiencefunctional outcomeshealth administrationimaging detectionimaging studyimprovedindexingmild traumatic brain injurymind controlneuroimagingneuropathologyoperationoutcome forecastpost-traumatic stresspublic health relevancerehabilitation servicerehabilitation strategyservice memberstatisticsstress symptomtoolvalidation studieswhite matterwhite matter changewhite matter injury
项目摘要
DESCRIPTION (provided by applicant):
Mild traumatic brain injury (mTBI) is the signature injury of the wars in Afghanistan and Iraq. Recent statistics indicate that 60% of blast injuries result in TBI and approximately 20% of returning OEF/OIF Veterans have sustained a TBI, with the majority classified as mTBI. Although many sequelae of mTBI resolve within a few months, a substantial portion of patients experience difficulties for years. Diagnosis of mTBI in the chronic stage is a frequent referral fo the Veterans Health Administration. Conventional MRI and CT are typically normal months after civilian and military mTBI making it difficult to accurately diagnose and to determine rehabilitation strategies. Diffusion tensor imaging (DTI) can be used to characterize and quantify WM pathways in the living brain. Specific to brain injury, pathological processes causing loss or disorganization of fibers associated with breakdown of myelin and downstream nerve terminals, neuronal swelling or shrinkage, and increased or decreased extracellular space, could affect the quantitative scalar metrics like mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and/or axial diffusivity (AD). Recent studies have reported that FA was reduced in chronic civilian mTBI. Evidence from military cohorts also suggests important changes in DTI metrics across several brain regions. Machine learning (ML) algorithms are particularly sensitive to distributed changes caused by disease as observed in several structural and functional studies. This particular class of algorithms is specifically designed to identify patterns in temporal or spatial data to distinguish between groups. While several ML algorithms exists, one particular multivariate algorithm known as a Support Vector Machine (SVM) has been successfully applied to Alzheimer's Disease studies as well as a recent study in a group of TBI patients through the use of DTI data. In addition, the incorporation
of principal component analysis (PCA) to SVM showed robust automated detection of WM degradation in Alzheimer's Disease over several sites and MR scanner platforms. This ability to evaluate this across platforms is particularly attractive to multi-center imaging studies that are performed in the VHA system. At present, the automated detection of biomarkers is scarce in the diagnosis and prognosis of mTBI in our Veteran population. This work will tailor an imaging and detection strategy that can possibly be used to not only identify Veterans with mTBI more objectively but also predict cognitive outcome to help facilitate appropriate rehabilitation strategies. Aim 1 will consist of a retrospective study of 70 subjects and controls to train the SVM algorithm to differentiate between mTBI pathology and uninjured military controls that were also deployed in the OIF/OEF/OND conflicts. DTI skeletons will be processed using Tract-Based Spatial Statistics (TBSS) software and will be used as inputs into the SVM algorithm. Using this data, parameters such as the cost function will be determined to optimize the algorithm. We will measure the accuracy, sensitivity and specificity of the algorithm by using a cross-validation approach. Finally for this first aim, we will use a sensitivity analysis techniqueto identify regions the algorithm weights more in determining if an mTBI has taken place. This will identify pathways that are vulnerable to injury. In Aim 2, we will use the SVM classifier on DTI scans to output possibility indices of mTBI. Regression analysis will be used to relate these indices to outcome measures. In conclusion, this work will provide a robust tool to not only better diagnose and characterize mTBI but also stratify more personalized rehabilitation strategies through the improved characterization of mTBI.
描述(由申请人提供):
轻度创伤性脑损伤(mTBI)是阿富汗和伊拉克战争的标志性损伤。最近的统计数据表明,60% 的爆炸伤会导致 TBI,大约 20% 回国的 OEF/OIF 退伍军人遭受过 TBI,其中大多数被归类为 mTBI。尽管 mTBI 的许多后遗症会在几个月内消失,但相当一部分患者会经历数年的困难。慢性阶段 mTBI 的诊断经常转诊给退伍军人健康管理局。传统的 MRI 和 CT 通常在民用和军用 mTBI 几个月后显示正常,因此很难准确诊断和确定康复策略。 弥散张量成像 (DTI) 可用于表征和量化活体大脑中的 WM 通路。具体到脑损伤,导致与髓磷脂和下游神经末梢分解、神经元肿胀或收缩以及细胞外空间增加或减少相关的纤维损失或紊乱的病理过程可能会影响定量标量指标,例如平均扩散率(MD)、分数各向异性(FA)、径向扩散率(RD)和/或轴向扩散率 (公元)。最近的研究表明,慢性平民 mTBI 中 FA 减少。来自军事群体的证据还表明,几个大脑区域的 DTI 指标发生了重要变化。 正如多项结构和功能研究中观察到的那样,机器学习 (ML) 算法对疾病引起的分布式变化特别敏感。此类特殊算法专门用于识别时间或空间数据中的模式以区分不同的组。虽然存在多种 ML 算法,但一种称为支持向量机 (SVM) 的特殊多变量算法已成功应用于阿尔茨海默病研究以及最近通过使用 DTI 数据对一组 TBI 患者进行的研究。此外,并入
主成分分析 (PCA) 与 SVM 的结合表明,在多个站点和 MR 扫描仪平台上,可以对阿尔茨海默病中的 WM 降解进行强大的自动检测。这种跨平台评估的能力对于在 VHA 系统中进行的多中心成像研究特别有吸引力。目前,生物标志物的自动检测在退伍军人群体中 mTBI 的诊断和预后方面还很缺乏。这项工作将定制一种成像和检测策略,不仅可以用来更客观地识别患有 mTBI 的退伍军人,还可以预测认知结果,以帮助促进适当的康复策略。 目标 1 将包括对 70 名受试者和对照进行回顾性研究,以训练 SVM 算法来区分 mTBI 病理学和未受伤的军事控制,这些控制也部署在 OIF/OEF/OND 冲突中。 DTI 骨架将使用基于区域的空间统计 (TBSS) 软件进行处理,并将用作 SVM 算法的输入。使用这些数据,将确定成本函数等参数来优化算法。我们将使用交叉验证方法来衡量算法的准确性、敏感性和特异性。最后,为了实现第一个目标,我们将使用敏感性分析技术来识别算法在确定是否发生 mTBI 时权重更大的区域。这将确定容易受伤的途径。在目标 2 中,我们将在 DTI 扫描上使用 SVM 分类器来输出 mTBI 的可能性指数。回归分析将用于将这些指数与结果指标联系起来。总之,这项工作将提供一个强大的工具,不仅可以更好地诊断和表征 mTBI,而且可以通过改进 mTBI 的表征来分层更个性化的康复策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Allen Taylor其他文献
Brian Allen Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Allen Taylor', 18)}}的其他基金
Multi-parametric MRI Assessment of Brain Connectivity and Spectroscopic Biomarkers in Patients with Opioid Use Disorder
阿片类药物使用障碍患者大脑连接性和光谱生物标志物的多参数 MRI 评估
- 批准号:
9975514 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Multi-parametric MRI Assessment of Brain Connectivity and Spectroscopic Biomarkers in Patients with a Substance Use Disorder
药物滥用障碍患者大脑连接性和光谱生物标志物的多参数 MRI 评估
- 批准号:
10685347 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Multi-parametric MRI Assessment of Brain Connectivity and Spectroscopic Biomarkers in Patients with a Substance Use Disorder
药物滥用障碍患者大脑连接性和光谱生物标志物的多参数 MRI 评估
- 批准号:
10229537 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Multi-parametric MRI Assessment of Brain Connectivity and Spectroscopic Biomarkers in Patients with a Substance Use Disorder
药物滥用障碍患者大脑连接性和光谱生物标志物的多参数 MRI 评估
- 批准号:
10457894 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Automated Assessment of White Matter Integrity in TBI Using Machine Learning
使用机器学习自动评估 TBI 中白质完整性
- 批准号:
8732156 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




