Statistical Tools for Whole-Genome Analysis & Prediction of Complex Traits and Diseases
全基因组分析统计工具
基本信息
- 批准号:9293346
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAftercareAgingBayesian ModelingBig DataBiologicalBloodCategoriesCollectionComplexComputer softwareDataData AnalysesData SetDevelopmentDietDiseaseExerciseGenesGeneticGenotypeGrantHigh Density Lipoprotein CholesterolHumanIndividualLDL Cholesterol LipoproteinsLibrariesLinear ModelsLinear RegressionsMemoryMethodsMethylationModelingMolecular ProfilingNatureOntologyOutcomePhenotypeProceduresResearch PersonnelRiskRisk FactorsSample SizeStatistical MethodsStudentsTeaching MaterialsTestingTextTrainingUnited States National Institutes of Healthbasechemotherapydesignflexibilitygenetic pedigreegenome analysisgenomic datahigh dimensionalityhuman datainstrumentinterestmalignant breast neoplasmmetabolomicsnon-geneticpublic health relevancesemiparametricsextooltraittranscriptome sequencingweb sitewhole genome
项目摘要
DESCRIPTION (provided by applicant): The analysis of big genomic data requires specialized software able to cope with challenges emerging from both the high dimensional nature of the data itself and the complexity of the underlying biological mechanisms. With NIH support we developed, tested and now maintain the Bayesian Generalized Linear Regression R-library (available at CRAN, BGLR, Pérez and de los Campos 2014): a comprehensive Bayesian statistical software that implements a large collection of Whole-Genome Regression (WGR) procedures, including shrinkage and variable selection methods for linear models and semi parametric regressions (RKHS). Several studies that have used BGLR for analyses of large genomic data sets (with hundreds of thousands of SNPs and thousands of individuals) as well as multi-layer omic data demonstrate the value of the software. For the renewal of our grant we propose a set of improvements and developments that will make BGLR better suited for the analysis of Big Data and will greatly expand the classes of models implemented. We will develop and implement: (Aim 1) methods to enable BGLR to carry out computations using inputs that are stored in distributed binary files, without fully loading data into RAM-this will open great opportunities for the analysis of big omic data sets; (Aim 2) a BGLR module to fit a diverse array of interaction models, including interactions between categorical (e.g., sex, treatment) or quantitative (e.g., BMI) risk factors with whole- genome data (e.g., SNPs, expression profiles); (Aim 3) methods to incorporate prior information (e.g., annotation) into whole genome regressions; and, (Aim 4) instruments for online training. The successful achievement of our aims will provide researchers with efficient data analysis tools for whole-genome analysis of large omic data sets.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum).
- DOI:10.1534/g3.118.200273
- 发表时间:2018-07-02
- 期刊:
- 影响因子:0
- 作者:Enciso-Rodriguez F;Douches D;Lopez-Cruz M;Coombs J;de Los Campos G
- 通讯作者:de Los Campos G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo de los Campos其他文献
Gustavo de los Campos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo de los Campos', 18)}}的其他基金
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
- 批准号:
10187158 - 财政年份:2021
- 资助金额:
$ 31万 - 项目类别:
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
- 批准号:
10424541 - 财政年份:2021
- 资助金额:
$ 31万 - 项目类别:
Statistical Tools for Whole-Genome Prediction of Complex Traits and Diseases
用于复杂性状和疾病的全基因组预测的统计工具
- 批准号:
8433350 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Statistical Tools for Whole-Genome Analysis & Prediction of Complex Traits and Diseases
全基因组分析统计工具
- 批准号:
8964392 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
9060460 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
8536872 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Statistical Tools for Whole-Genome Prediction of Complex Traits and Diseases
用于复杂性状和疾病的全基因组预测的统计工具
- 批准号:
8607197 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
8710270 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Statistical Tools for Whole-Genome Prediction of Complex Traits and Diseases
用于复杂性状和疾病的全基因组预测的统计工具
- 批准号:
8274041 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
8369791 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 31万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 31万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 31万 - 项目类别:














{{item.name}}会员




