DATA AND TOOLS FOR MODELING METABOLISM AND REACTIVITY

用于模拟代谢和反应性的数据和工具

基本信息

  • 批准号:
    9006922
  • 负责人:
  • 金额:
    $ 35.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Adverse drug reactions (ADRs) are dangerous and expensive, afflicting about 1.5% of hospitalized patients with profound health and financial consequences. In Medicare patients alone, adverse drug reactions account for 19% of total spending ($339 billion), more than 1,900 deaths, and more than 77,000 extra hospital days per year. Idiosyncratic ADRs, especially rare and severe hypersensitivity-driven ADRs, are the leading cause of medicine withdrawal and termination of clinical development. At the same time, a large proportion of drugs are not associated with hypersensitivity driven ADRs, offering hope that new medicines could avoid them entirely with reliable predictors of risk. Hypersensitivity driven ADRs are caused by the formation of chemically reactive metabolites by metabolic enzymes. These reactive metabolites covalently attach to proteins to become immunogenic and provoke an ADR. Unfortunately, current computational and experimental approaches do not reliably identify drug candidates that form reactive metabolites. These approaches are limited because they inadequately model metabolism, which can both render toxic molecules safe and safe molecules toxic. To overcome this limitation, the proposed study aims to curate a public database of metabolism and reactivity and use this database to build accurate and validated mathematical models of metabolism and reactivity. The models will be constructed using machine-learning algorithms that quantitatively summarize the knowledge from thousands of published studies. The Aims are to (1) curate a database of metabolism and build models that identify rules governing the structure of reaction products during drug metabolism in the liver, (2) curate a database of reactivity and build improved reactivity models that mechanistically predict which metabolites are reactive with biological molecules, and (3) curate a database of reactive metabolites and combine these models to predict when molecules form reactive metabolites that covalently bind proteins. The computational models generated by these Aims will be validated through statistical approaches and against bench-top experiments. Taken together, this approach will substantially improve on existing approaches by more accurately modeling the properties determining whether metabolism renders drugs toxic or safe. The predictive models will make new medicines safer by helping researchers avoid molecules prone to ADRs without harming patients.
 描述(由申请人提供): 药品不良反应(ADR)是危险和昂贵的,约1.5%的住院患者受到影响,造成严重的健康和经济后果。仅在医疗保险患者中,药物不良反应就占总支出的19%(3390亿美元),超过1900人死亡,每年额外住院天数超过7.7万天。特殊的不良反应,尤其是罕见和严重的超敏反应引起的不良反应,是导致停药和终止临床开发的主要原因。与此同时,很大一部分药物与超敏反应导致的不良反应无关,这为新药提供了希望,即通过可靠的风险预测,可以完全避免它们。由超敏反应引起的不良反应是由代谢酶形成化学反应的代谢物引起的。这些反应性代谢物共价附着在蛋白质上,成为免疫原性并引发ADR。不幸的是,目前的计算和实验方法不能可靠地识别形成反应性代谢物的候选药物。这些方法是有限的,因为它们没有对新陈代谢进行充分的建模,新陈代谢既可能使有毒分子安全,也可能使安全分子有毒。为了克服这一限制,拟议的研究旨在建立一个关于新陈代谢和反应性的公共数据库,并使用该数据库来建立准确和有效的新陈代谢和反应性数学模型。这些模型将使用机器学习算法来构建,这些算法量化地总结了数千项已发表研究的知识。其目的是(1)建立代谢数据库并建立模型,以确定在肝脏药物代谢期间控制反应产物结构的规则;(2)管理反应性数据库并建立改进的反应性模型,从机械上预测哪些代谢物与生物分子发生反应;以及(3)管理反应性代谢物数据库并结合这些模型来预测分子何时形成与蛋白质共价结合的反应性代谢物。由这些AIMS生成的计算模型将通过统计方法并对照台式实验进行验证。综上所述,这种方法将通过更准确地模拟决定新陈代谢是否使药物有毒或安全的性质,大大改进现有的方法。这些预测模型将帮助研究人员在不伤害患者的情况下避免易发生ADR的分子,从而使新药更加安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GROVER P MILLER其他文献

GROVER P MILLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GROVER P MILLER', 18)}}的其他基金

Systematic Discovery of Bioactivation-Associated Structural Alerts
生物活化相关结构警报的系统发现
  • 批准号:
    10491726
  • 财政年份:
    2020
  • 资助金额:
    $ 35.11万
  • 项目类别:
Systematic Discovery of Bioactivation-Associated Structural Alerts
生物活化相关结构警报的系统发现
  • 批准号:
    10260584
  • 财政年份:
    2020
  • 资助金额:
    $ 35.11万
  • 项目类别:
Systematic Discovery of Bioactivation-Associated Structural Alerts
生物活化相关结构警报的系统发现
  • 批准号:
    10674484
  • 财政年份:
    2020
  • 资助金额:
    $ 35.11万
  • 项目类别:
Computationally modeling the impact of ontogeny on drug metabolic fate
计算模拟个体发育对药物代谢命运的影响
  • 批准号:
    9215358
  • 财政年份:
    2016
  • 资助金额:
    $ 35.11万
  • 项目类别:
Computationally modeling the impact of ontogeny on drug metabolic fate
计算模拟个体发育对药物代谢命运的影响
  • 批准号:
    9762980
  • 财政年份:
    2016
  • 资助金额:
    $ 35.11万
  • 项目类别:
RATE LIMITING STEPS IN CYTOCHROME P450 CATALYSIS
细胞色素 P450 催化中的限速步骤
  • 批准号:
    6138315
  • 财政年份:
    2000
  • 资助金额:
    $ 35.11万
  • 项目类别:
RATE LIMITING STEPS IN CYTOCHROME P450 CATALYSIS
细胞色素 P450 催化中的限速步骤
  • 批准号:
    2767941
  • 财政年份:
    1999
  • 资助金额:
    $ 35.11万
  • 项目类别:

相似海外基金

A personalised approach to manage adverse reactions to CFTR modulator therapy in patients with cystic fibrosis
治疗囊性纤维化患者 CFTR 调节剂治疗不良反应的个性化方法
  • 批准号:
    MR/X00094X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Research Grant
Identifying genetic polymorphisms and elucidating polygenic architecture associated with adverse reactions due to rituximab
识别遗传多态性并阐明与利妥昔单抗不良反应相关的多基因结构
  • 批准号:
    22K15910
  • 财政年份:
    2022
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanistic study of sulfa drug-induced severe cutaneous adverse reactions by focusing on HLA-A*11:01
以HLA-A*为重点的磺胺类药物致严重皮肤不良反应机制研究11:01
  • 批准号:
    22K06738
  • 财政年份:
    2022
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
  • 批准号:
    449379
  • 财政年份:
    2020
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Studentship Programs
Significance of gamma-chain in severe cutaneous adverse reactions
伽马链在严重皮肤不良反应中的意义
  • 批准号:
    19K17779
  • 财政年份:
    2019
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Historical sociology of adverse reactions related to vaccination in Japan
日本疫苗接种不良反应的历史社会学
  • 批准号:
    18K00267
  • 财政年份:
    2018
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SEARCH (active Surveillance and Evaluation of Adverse Reactions in Canadian Healthcare) & PREVENT (Pharmacogenomics of Adverse Reaction EVEnts National Team)
SEARCH(加拿大医疗保健不良反应的主动监测和评估)
  • 批准号:
    379425
  • 财政年份:
    2018
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Operating Grants
IGF::OT::IGF SBIR Phase II: Topic 338 - Predictive Biomarkers of Adverse Reactions to Prostrate Cancer Radiotherapy
IGF::OT::IGF SBIR II 期:主题 338 - 前列腺癌放射治疗不良反应的预测生物标志物
  • 批准号:
    9576448
  • 财政年份:
    2017
  • 资助金额:
    $ 35.11万
  • 项目类别:
Development of in silico prediction method for idiosyncratic adverse reactions associated with HLA genotypes
与 HLA 基因型相关的特殊不良反应的计算机预测方法的开发
  • 批准号:
    16K15156
  • 财政年份:
    2016
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Characterising the Immune Response to Drugs That Cause Idiosyncratic Adverse Reactions
表征对引起特殊不良反应的药物的免疫反应
  • 批准号:
    367156
  • 财政年份:
    2016
  • 资助金额:
    $ 35.11万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了