Integrative Motor Activity Biomarker for the Risk of Alzheimer's Risk
阿尔茨海默病风险的综合运动活动生物标志物
基本信息
- 批准号:9804299
- 负责人:
- 金额:$ 358.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAdoptedAdverse effectsAffectAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAmyloid beta-ProteinArtificial IntelligenceAutopsyBiological MarkersBiologyBrainBrain StemCategoriesCerebrovascular DisordersCessation of lifeCharacteristicsCircadian DysregulationClinicalCognitionComplexCost of IllnessDataData AnalyticsDementiaDiseaseDisease ProgressionEarly DiagnosisElderlyEnrollmentFailureFractalsFunctional disorderGeneticGenetic RiskGoalsHealthcareHistopathologyImmunochemistryImpaired cognitionIndividualInterventionKnowledgeLeadLinkMeasurementMeasuresMemoryModelingMonitorMotorMotor ActivityMovementMuscleNerveNeural Network SimulationNeurobehavioral ManifestationsParticipantPathologyPatternPerformancePhasePhysical activityPhysiologicalPhysiologyPreventive InterventionPublic HealthRegulationRestRiskRisk FactorsSeriesSex DifferencesSleepSleep FragmentationsSleep disturbancesSpinal CordStructureSystemTechniquesTherapeuticTimeagedanalytical toolbasecircadianclinical Diagnosisdeep learningdeep neural networkdementia riskeffective interventiongenetic risk factorgenetic variantgenome wide association studyhigh riskinsightlongitudinal databasemild cognitive impairmentmotor controlmultimodalityneuropathologynon-geneticnovelnovel therapeutic interventionpre-clinicalpredictive markerpredictive toolssextau aggregationwearable device
项目摘要
Project Summary/Abstract
Developing effective interventions for prevention and treatment of Alzheimer's disease (AD) requires early
detection of the disease. With recent advances in wearable device and physiological data analytical tools, it is
feasible to assess many physiological functions unobtrusively by monitoring spontaneous motor activity. The
goal of this project is to develop an integrated, non-invasive biomarker for the risk of Alzheimer's dementia
using motor activity recordings. Among many physiological functions derived from motor activity, reduced
physical activity levels, sleep disturbances, circadian dysfunction, and perturbation in fractal physiological
regulation appear to precede the cognitive symptoms of Alzheimer's disease (AD), and signify an elevated risk
of developing Alzheimer's dementia. However, it is unknown whether these dysfunctions predict Alzheimer's
risk independently or they are interconnected to amplify/diminish each other's adverse effect. For a better
prediction of Alzheimer's dementia using motor activity, PI and his team propose to leverage the above
physiological risk factors using a novel artificial intelligence technique. To achieve this, PI and his team will
utilize the existing longitudinal database of the Memory and Aging Project at Rush Alzheimer's Disease Center,
in which over 1,400 old participants have been enrolled since 2005 and have agreed to (i) undergo annual
motor activity monitor and structured clinical examinations and (ii) donate brain, the entire spinal cord, and
selected nerve and muscles at the time of death. The ambulatory motor activity recordings collected annually
will be used to assess a series of constructs including (i) physical activity (level of physical activity, intensity of
physical activity, and average daily inactivity duration), (ii) sleep characteristics (total sleep duration, sleep
efficiency, and sleep fragmentation), (iii) circadian rhythmicitiy (normalized 24-h amplitude, acrophase of daily
activity rhythm, interdaily stability, and intradaily variability), and (iv) fractal motor regulation (temporal
correlations in motor activity fluctuations at small and large time scales). Using these physiological measures
together with clinical diagnosis, cognition, genetics, and post-mortem histopathology, three aims will be
addressed: 1) determine whether a deep learning based neural network model can construct an integrated
biomarker from the above physiological measures for better prediction of the risk of Alzheimer's dementia and
the risk of conversion from mild cognitive impairment to Alzheimer's dementia in a short time frame (i.e., 2
years); 2) determine whether the integrated biomarker modifies or interacts with the genetic effect on AD; and
3) determine how specifically the integrated biomarker reflects AD pathology at autopsy. Achieving the aims
will result in the first integrated biomarker of motor activity that leverages multimodal, noninvasive
measurements for a better prediction of Alzheimer's dementia. The results to be obtained may also lead to a
better understanding of the complex biology and physiology of AD, which will potentially guide the seeking of
disease modifying therapies or interventions.
项目总结/摘要
开发有效的干预措施预防和治疗阿尔茨海默病(AD)需要早期
疾病的检测。随着可穿戴设备和生理数据分析工具的最新进展,
通过监测自发运动活动,可以不引人注目地评估许多生理功能。的
该项目的目标是开发一种综合的、非侵入性的阿尔茨海默氏痴呆症风险生物标志物
使用运动活动记录。在许多源自运动活动的生理功能中,
身体活动水平,睡眠障碍,昼夜节律功能障碍,以及分形生理学的扰动
调节似乎先于阿尔茨海默病(AD)的认知症状,并意味着风险升高
患上老年痴呆症的几率然而,这些功能障碍是否预示着阿尔茨海默氏症,
风险独立存在,或者它们相互关联,以放大/减少彼此的不利影响。对美好
利用运动活动预测阿尔茨海默氏症痴呆症,PI和他的团队建议利用上述
生理风险因素使用一种新的人工智能技术。为了实现这一目标,PI和他的团队将
利用拉什阿尔茨海默病中心记忆和衰老项目现有的纵向数据库,
自2005年起,已有超过1,400名长者参加,并同意(i)每年接受
运动活动监测和结构化的临床检查,以及(ii)捐献大脑、整个脊髓,以及
选择的神经和肌肉每年收集的步行运动记录
将用于评估一系列结构,包括(i)身体活动(身体活动的水平,
身体活动和平均每日不活动持续时间),(ii)睡眠特征(总睡眠持续时间、睡眠
效率和睡眠片段),(iii)昼夜节律性(标准化的24小时振幅,每日峰值相位
活动节律、日间稳定性和日内变异性),以及(iv)分形运动调节(时间
在小的和大的时间尺度上运动活动波动的相关性)。通过这些生理学的测量
与临床诊断、认知、遗传学和死后组织病理学一起,
解决:1)确定基于深度学习的神经网络模型是否可以构建集成的
- 来自上述生理测量的生物标志物,用于更好地预测阿尔茨海默氏痴呆症的风险,
在短时间内从轻度认知障碍转化为阿尔茨海默氏痴呆的风险(即,2
2)确定整合的生物标志物是否改变对AD的遗传效应或与其相互作用;以及
3)确定综合生物标志物如何具体反映尸检时的AD病理学。实现目标
将产生第一个运动活动的综合生物标志物,
更好地预测阿尔茨海默氏痴呆症。获得的结果也可能导致
更好地了解AD的复杂生物学和生理学,这将潜在地指导寻求
疾病修饰疗法或干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kun Hu其他文献
Kun Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kun Hu', 18)}}的其他基金
Circadian disturbance and dementia in Latin America
拉丁美洲的昼夜节律紊乱和痴呆症
- 批准号:
10739410 - 财政年份:2023
- 资助金额:
$ 358.47万 - 项目类别:
Fractal motor activity regulation and the risk for Alzheimers disease in middle-to-old aged adults
分形运动活动调节与中老年人阿尔茨海默病风险
- 批准号:
9579772 - 财政年份:2018
- 资助金额:
$ 358.47万 - 项目类别:
Neuropathology for disrupted multiscale activity control in Alzheimer's disease
阿尔茨海默病多尺度活动控制中断的神经病理学
- 批准号:
9264449 - 财政年份:2015
- 资助金额:
$ 358.47万 - 项目类别:
Neuropathology for disrupted multiscale activity control in Alzheimer's disease
阿尔茨海默病多尺度活动控制中断的神经病理学
- 批准号:
8888574 - 财政年份:2015
- 资助金额:
$ 358.47万 - 项目类别:
Neuropathology for disrupted multiscale activity control in Alzheimer's disease
阿尔茨海默病多尺度活动控制中断的神经病理学
- 批准号:
9134669 - 财政年份:2015
- 资助金额:
$ 358.47万 - 项目类别:
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
8431501 - 财政年份:2010
- 资助金额:
$ 358.47万 - 项目类别:
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
8046427 - 财政年份:2010
- 资助金额:
$ 358.47万 - 项目类别:
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
7873392 - 财政年份:2010
- 资助金额:
$ 358.47万 - 项目类别:
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
8529598 - 财政年份:2010
- 资助金额:
$ 358.47万 - 项目类别:
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
8646975 - 财政年份:2010
- 资助金额:
$ 358.47万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 358.47万 - 项目类别:
Research Grant














{{item.name}}会员




