Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
基本信息
- 批准号:9805901
- 负责人:
- 金额:$ 79.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-22 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3T3 CellsAllelesAnimal TestingAnimalsAntibodiesBase PairingBindingC57BL/6 MouseCapsidCapsid ProteinsCellsClinical TrialsCollaborationsDNADNA Double Strand BreakDNA deliveryDNA sequencingDevelopmentEndocytosisEngineeringExposure toFlow CytometryFluorescenceGenetic DiseasesGenomeHematopoietic stem cellsHigh-Throughput DNA SequencingHigh-Throughput Nucleotide SequencingHomingIn VitroIndividualInjectionsKineticsLipidsLiverLuminescent MeasurementsMacaca mulattaMediatingMethodsMitoticModificationMusMutateNucleic AcidsOncogenicOutcomePatientsPoint MutationProcessProteinsRNAReagentReporterReporter GenesReportingRibonucleoproteinsRiskSafetySimian virus 40SiteSomatic CellSpecificitySystemTarget PopulationsTechnologyTissuesTransgenic MiceTropismViralaptamerbasecell typeclinical developmentclinical translationclinically relevantdesignembryonic stem cellgenome editingimmunogenicityimprovedin vivoinsertion/deletion mutationlarge scale productionlipid nanoparticleluminescencenanoparticle deliverynonhuman primatenovelnucleasenucleocytoplasmic transportparticleprogramsrepairedsomatic cell gene editingstoichiometrytooluptakewhole body imaging
项目摘要
Project Summary
New in vivo delivery technologies are urgently needed that enable selective genome editing of somatic
cells without the limitations of existing viral delivery systems or lipid nanoparticles. We propose to develop two
complementary strategies. First, by tethering Cas9 and base editor ribonucleoproteins (RNPs) to homing
moieties, such as antibodies or nucleic acid aptamers, we will develop delivery systems capable of editing a
specific population of target cells. As a second approach, we will engineer viral like particles (VLPs) to facilitate
efficient, tissue and cell specific delivery of genome editing agents. In the process, we will develop delivery
systems that are capable of targeting hematopoietic stem and progenitor cells (HSPCs), among other tissues.
To evaluate the efficiency and cell-type specificity of our proposed delivery methods, we will also generate a
reporter mouse that quantitatively and sensitively reports genome editing from base editors or programmable
nucleases without requiring DNA sequencing. In this proposal, we intend to:
(1) Design targeted ribonucleoprotein conjugates that selectively bind, enter, and edit target cells. Cell
and tissue selective Cas9 and base editor RNP delivery systems will be designed by tethering genome editing
proteins, directly or indirectly, to aptamer and antibody targeting moieties. The kinetics, magnitude, and
specificity of RNP endocytosis, endosomal escape, and nuclear transport will be defined and genome editing
efficiency and targeting specificity determined in vitro and in vivo.
(2) Engineer ribonucleoprotein nanoparticle delivery systems for cell and tissue targeted genome
editing. SV40 capsid proteins will be engineered to form viral like particles (VLPs) that are capable of
packaging ribonucleoproteins, rather than DNA. The stoichiometry of VLP-RNP delivery systems, which affords
optimal cell uptake, endosomal escape, and nuclear transport will be defined. Targeting specificity, as
determined by viral capsid tropism will be defined, and genome editing efficiency analyzed in vitro and in vivo.
(3) Develop a reporter mouse for facile assessment of targeted genome editing efficiency and cell- and
tissue-type specificity. We will optimize a reporter gene to independently detect base editing, end-joining, or
homology-directed repair. The reporter will be integrated into the Rosa26 safe harbor locus in C57BL/6 mouse
embryonic stem cells to generate transgenic mice. Genome editing outcomes will be evaluated by
fluorescence and luminescence measurements and correlated with high throughput DNA sequencing.
(4) Demonstrate safe and effective delivery of genome editing agents in non-human primates. The
delivery of genome editors to HSPCs and other target tissues will be assessed in rhesus macaques. Both
mammalian and non-mammalian systems will be evaluated to optimize large scale production of the genome
editor and related RNP delivery components. Targeting specificity and genome editing efficiency, as well as
safety will be analyzed in vivo. We anticipate identifying effective delivery systems suitable for clinical trials.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliot Chaikof其他文献
Elliot Chaikof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliot Chaikof', 18)}}的其他基金
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10627922 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10420534 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Sulfated Poly-Amido-Saccharide (sulPAS) Biomaterials as Anticoagulants
作为抗凝剂的硫酸化聚酰胺糖 (sulPAS) 生物材料
- 批准号:
10649522 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10474980 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
9795082 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10229398 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10664097 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10222522 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 79.68万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:














{{item.name}}会员




