A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
基本信息
- 批准号:9810163
- 负责人:
- 金额:$ 46.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlcohol or Other Drugs useBrainComplexDataData SetDiseaseEconomic BurdenEnsureEnvironmental Risk FactorFamilyGenesGeneticGenetic ResearchGenetic studyGenomeIndividualLeadMediationModelingNeuraxisNicotine DependencePathway interactionsPhenotypePreventionResearchSamplingStructureSubstance Addictionaddictionbasebiopsychosocialbrain circuitryconnectomedeep learningdeep learning algorithmeffective therapygenetic varianthealth economicsimaging geneticsimprovednicotine usenovelpublic health prioritiestraituser friendly softwarewhole genome
项目摘要
Substance use and addiction are complex biopsychosocial disorders influenced by both genetic
and environmental factors. A key challenge in addiction genetics research is to understand how
multiple genetic variants interactively influence addiction traits through impacting the central
nervous system. To address this challenge, we propose a large-scale mediation analysis
framework to identify addiction-related gene-brain circuitry pathways, using nicotine addiction as
the targeted disorder, although the platform will be readily applicable for other addiction-related
disorders and phenotypes. We will fully leverage the complex and interactive interdependent
relationships between the imaging-genetics data and perform multivariate statistical inference
with simultaneously increased statistical power and reduce false positive rates. The results will
precisely identify multiple sets of genetic variants that interactively alter brain functional and
structural circuitries, and then influence nicotine addiction. We will further supplement the
mediation results with deep learning algorithms to study how genetic variants non-linearly and
interactively coordinate to influence nicotine addiction and explain the phenotypic variance.
Novel network topology based convolutional and pooling functions will be developed to achieve
optimal prediction accuracy of addiction traits using genome-connectome pathways. All models
and findings will be carefully validated through multiple independent large-sample data sets of
imaging-genetics studies for nicotine addiction for ensuring the replicability and reliability of our
findings derived from this framework. We plan to produce a freely available and user-friendly
software incorporating the mediation analysis framework and deep learning algorithms enabling
the complex whole genome - connectome analysis for addiction genetics research.
物质使用和成瘾是一种复杂的生物-心理-社会障碍,受遗传因素的影响
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuo Chen其他文献
Shuo Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuo Chen', 18)}}的其他基金
Elucidating circuit mechanisms of brain rhythms in the aging brain
阐明衰老大脑中脑节律的回路机制
- 批准号:
10646164 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Elucidating circuit mechanisms of brain rhythms in the aging brain
阐明衰老大脑中脑节律的回路机制
- 批准号:
10371698 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10242826 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10468183 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10684291 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别: