A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
基本信息
- 批准号:10242826
- 负责人:
- 金额:$ 46.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBrainComplexDataData SetDiseaseEconomic BurdenEnsureEnvironmental Risk FactorFamilyGenesGeneticGenetic ResearchGenetic studyGenomeIndividualLeadMediationModelingNeuraxisNicotine DependencePathway interactionsPhenotypePreventionResearchSamplingStructureSubstance Addictionaddictionbasebiopsychosocialbrain circuitryconnectomedeep learningdeep learning algorithmeffective therapygenetic varianthealth economicsimaging geneticsimprovednicotine usenovelpublic health prioritiessubstance usetraituser friendly softwarewhole genome
项目摘要
Substance use and addiction are complex biopsychosocial disorders influenced by both genetic
and environmental factors. A key challenge in addiction genetics research is to understand how
multiple genetic variants interactively influence addiction traits through impacting the central
nervous system. To address this challenge, we propose a large-scale mediation analysis
framework to identify addiction-related gene-brain circuitry pathways, using nicotine addiction as
the targeted disorder, although the platform will be readily applicable for other addiction-related
disorders and phenotypes. We will fully leverage the complex and interactive interdependent
relationships between the imaging-genetics data and perform multivariate statistical inference
with simultaneously increased statistical power and reduce false positive rates. The results will
precisely identify multiple sets of genetic variants that interactively alter brain functional and
structural circuitries, and then influence nicotine addiction. We will further supplement the
mediation results with deep learning algorithms to study how genetic variants non-linearly and
interactively coordinate to influence nicotine addiction and explain the phenotypic variance.
Novel network topology based convolutional and pooling functions will be developed to achieve
optimal prediction accuracy of addiction traits using genome-connectome pathways. All models
and findings will be carefully validated through multiple independent large-sample data sets of
imaging-genetics studies for nicotine addiction for ensuring the replicability and reliability of our
findings derived from this framework. We plan to produce a freely available and user-friendly
software incorporating the mediation analysis framework and deep learning algorithms enabling
the complex whole genome - connectome analysis for addiction genetics research.
物质使用和成瘾是受基因影响的复杂的生物、心理和社会疾病
以及环境因素。成瘾遗传学研究的一个关键挑战是了解
多个遗传变异通过影响中枢神经系统来交互影响成瘾特征
神经系统。为了应对这一挑战,我们提出了一个大规模的调解分析
识别成瘾相关基因-大脑回路通路的框架,将尼古丁成瘾作为
尽管该平台很容易适用于其他与成瘾有关的疾病,但仍有针对性的障碍
疾病和表型。我们将充分利用复杂和互动的相互依存
影像遗传学数据与多变量统计推断之间的关系
同时增加了统计能力,降低了假阳性率。结果将会是
精确识别多组基因变异,这些变异可以交互改变大脑功能和
结构回路,然后影响尼古丁成瘾。我们将进一步补充
使用深度学习算法研究遗传变异如何非线性和
交互协调影响尼古丁成瘾并解释表型差异。
将开发基于卷积和池化功能的新型网络拓扑来实现
用基因组连接组途径预测成瘾特征的最佳准确度。所有模型
调查结果将通过多个独立的大样本数据集进行仔细验证
尼古丁成瘾的成像遗传学研究,以确保我们的可重复性和可靠性
从这一框架中得出的结论。我们计划制作一个免费提供和用户友好的
整合了中介分析框架和深度学习算法的软件,支持
用于成瘾遗传学研究的复杂全基因组连接组分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuo Chen其他文献
Shuo Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuo Chen', 18)}}的其他基金
Elucidating circuit mechanisms of brain rhythms in the aging brain
阐明衰老大脑中脑节律的回路机制
- 批准号:
10646164 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Elucidating circuit mechanisms of brain rhythms in the aging brain
阐明衰老大脑中脑节律的回路机制
- 批准号:
10371698 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
9810163 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10468183 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10684291 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Diversity of neural stem cells lineages and temporal scaling in mammalian complex brain formation
哺乳动物复杂大脑形成中神经干细胞谱系的多样性和时间尺度
- 批准号:
23H00383 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Integration and interoperability of complex data and tissues from the human brain
人脑复杂数据和组织的集成和互操作性
- 批准号:
10789107 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Linking dementia pathology and alteration in brain activation to complex daily functional decline during the preclinical dementia stage
将痴呆病理学和大脑激活的改变与临床前痴呆阶段复杂的日常功能下降联系起来
- 批准号:
10662690 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Architectonic analysis of complex cortical circuits in healthy and diseased brain
健康和患病大脑中复杂皮质回路的结构分析
- 批准号:
10749697 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
NCS-FR: Engineering Brain Circuits for Complex Scene Analysis
NCS-FR:用于复杂场景分析的工程大脑电路
- 批准号:
2319321 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Standard Grant
Disrupted ciliary signaling in the brain pathology of Tuberous Sclerosis Complex (Diversity Supplement)
结节性硬化症脑部病理学中纤毛信号传导中断(多样性补充剂)
- 批准号:
10516328 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
EAGER: Bidirectional Body-Brain-Machine Interface (B3MI) for Control of Complex Dynamics
EAGER:用于控制复杂动力学的双向体脑机接口 (B3MI)
- 批准号:
2124608 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Standard Grant
CREATE in Complex Dynamics: Accelerating discoveries in brain and behaviour
复杂动态中的创造:加速大脑和行为的发现
- 批准号:
497990-2017 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Collaborative Research and Training Experience
Evolutionary Algorithm Development for Applications in Brain Connectomics and Other Complex Systems
脑连接组学和其他复杂系统应用的进化算法开发
- 批准号:
RGPIN-2020-04500 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Discovery Grants Program - Individual
CREATE in Complex Dynamics: Accelerating discoveries in brain and behaviour
复杂动态中的创造:加速大脑和行为的发现
- 批准号:
497990-2017 - 财政年份:2021
- 资助金额:
$ 46.35万 - 项目类别:
Collaborative Research and Training Experience