A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
基本信息
- 批准号:10684291
- 负责人:
- 金额:$ 46.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBrainCentral Nervous SystemComplexDataData SetDiseaseEconomic BurdenEnsureEnvironmental Risk FactorFamilyGenesGeneticGenetic ResearchGenetic studyGenomeHealthIndividualMediationModelingNicotine DependencePathway interactionsPhenotypePreventionResearchSamplingSubstance Addictionaddictionbiopsychosocialbrain circuitryconnectomedeep learningdeep learning algorithmeffective therapygenetic variantimaging geneticsimprovednicotine usenovelpublic health prioritiessubstance usetraituser friendly softwarewhole genome
项目摘要
Substance use and addiction are complex biopsychosocial disorders influenced by both genetic
and environmental factors. A key challenge in addiction genetics research is to understand how
multiple genetic variants interactively influence addiction traits through impacting the central
nervous system. To address this challenge, we propose a large-scale mediation analysis
framework to identify addiction-related gene-brain circuitry pathways, using nicotine addiction as
the targeted disorder, although the platform will be readily applicable for other addiction-related
disorders and phenotypes. We will fully leverage the complex and interactive interdependent
relationships between the imaging-genetics data and perform multivariate statistical inference
with simultaneously increased statistical power and reduce false positive rates. The results will
precisely identify multiple sets of genetic variants that interactively alter brain functional and
structural circuitries, and then influence nicotine addiction. We will further supplement the
mediation results with deep learning algorithms to study how genetic variants non-linearly and
interactively coordinate to influence nicotine addiction and explain the phenotypic variance.
Novel network topology based convolutional and pooling functions will be developed to achieve
optimal prediction accuracy of addiction traits using genome-connectome pathways. All models
and findings will be carefully validated through multiple independent large-sample data sets of
imaging-genetics studies for nicotine addiction for ensuring the replicability and reliability of our
findings derived from this framework. We plan to produce a freely available and user-friendly
software incorporating the mediation analysis framework and deep learning algorithms enabling
the complex whole genome - connectome analysis for addiction genetics research.
物质使用和成瘾是受基因影响的复杂的生物、心理和社会疾病
以及环境因素。成瘾遗传学研究的一个关键挑战是了解
多个遗传变异通过影响中枢神经系统来交互影响成瘾特征
神经系统。为了应对这一挑战,我们提出了一个大规模的调解分析
识别成瘾相关基因-大脑回路通路的框架,将尼古丁成瘾作为
尽管该平台很容易适用于其他与成瘾有关的疾病,但仍有针对性的障碍
疾病和表型。我们将充分利用复杂和互动的相互依存
影像遗传学数据与多变量统计推断之间的关系
同时增加了统计能力,降低了假阳性率。结果将会是
精确识别多组基因变异,这些变异可以交互改变大脑功能和
结构回路,然后影响尼古丁成瘾。我们将进一步补充
使用深度学习算法研究遗传变异如何非线性和
交互协调影响尼古丁成瘾并解释表型差异。
将开发基于卷积和池化功能的新型网络拓扑来实现
用基因组连接组途径预测成瘾特征的最佳准确度。所有模型
调查结果将通过多个独立的大样本数据集进行仔细验证
尼古丁成瘾的成像遗传学研究,以确保我们的可重复性和可靠性
从这一框架中得出的结论。我们计划制作一个免费提供和用户友好的
整合了中介分析框架和深度学习算法的软件,支持
用于成瘾遗传学研究的复杂全基因组连接组分析。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An efficient data integration scheme for synthesizing information from multiple secondary datasets for the parameter inference of the main analysis.
一种有效的数据集成方案,用于合成来自多个辅助数据集的信息,以进行主要分析的参数推断。
- DOI:10.1111/biom.13858
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Chen,Chixiang;Wang,Ming;Chen,Shuo
- 通讯作者:Chen,Shuo
Statistical Commentary: Church et al. (2018, 2020, 2021) and Spielmans et al. (2020, 2021) Published Debate Regarding the Effectiveness of Acupoint Tapping by Meta-analysis.
- DOI:10.1097/nmd.0000000000001498
- 发表时间:2022-02-01
- 期刊:
- 影响因子:0
- 作者:Chen S
- 通讯作者:Chen S
ICN: Extracting interconnected communities in gene Co-expression networks.
ICN:提取基因共表达网络中相互关联的社区。
- DOI:10.1093/bioinformatics/btab047
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wu,Qiong;Ma,Tianzhou;Liu,Qingzhi;Milton,DonaldK;Zhang,Yuan;Chen,Shuo
- 通讯作者:Chen,Shuo
High-dimension to high-dimension screening for detecting genome-wide epigenetic and noncoding RNA regulators of gene expression
高维到高维筛选,用于检测基因表达的全基因组表观遗传和非编码 RNA 调节因子
- DOI:10.1093/bioinformatics/btac518
- 发表时间:2022
- 期刊:
- 影响因子:5.8
- 作者:Ke, Hongjie;Ren, Zhao;Qi, Jianfei;Chen, Shuo;Tseng, George C.;Ye, Zhenyao;Ma, Tianzhou;Alkan, ed., Can
- 通讯作者:Alkan, ed., Can
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuo Chen其他文献
Shuo Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuo Chen', 18)}}的其他基金
Elucidating circuit mechanisms of brain rhythms in the aging brain
阐明衰老大脑中脑节律的回路机制
- 批准号:
10646164 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Elucidating circuit mechanisms of brain rhythms in the aging brain
阐明衰老大脑中脑节律的回路机制
- 批准号:
10371698 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10242826 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
9810163 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
A Multivariate Mediation and Deep Learning Framework for Genome-Connectome -Substance Use Research
基因组-连接组-药物使用研究的多元中介和深度学习框架
- 批准号:
10468183 - 财政年份:2019
- 资助金额:
$ 46.35万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategy to Attack Coronavirus Infections Brain Fog-Central Nervous System Sequelae Using a Novel Patented Technology
利用新型专利技术对抗冠状病毒感染脑雾-中枢神经系统后遗症的策略
- 批准号:
23K10453 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying blood brain barrier signatures in cerebral malaria and central nervous system infections to inform treatment targets and patient stratific
识别脑型疟疾和中枢神经系统感染中的血脑屏障特征,以告知治疗目标和患者分层
- 批准号:
2887633 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Studentship
Improved delivery of gene therapies to the central nervous system by focused ultrasound-mediated disruption of the blood-brain barrier
通过聚焦超声介导的血脑屏障破坏,改善中枢神经系统基因治疗的传递
- 批准号:
10443357 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Improved Delivery of Gene Therapies to the Central Nervous System by Focused Ultrasound-Mediated Disruption of the Blood-Brain Barrier
通过聚焦超声介导的血脑屏障破坏改善基因治疗对中枢神经系统的传递
- 批准号:
10613587 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Understanding of adverse effects of organic arsenicals on central nervous system by chemical structure-cell type-brain region-toxicity relationship analyses
通过化学结构-细胞类型-脑区-毒性关系分析了解有机砷对中枢神经系统的不良影响
- 批准号:
22K12394 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of neural stem cell differentiation in central nervous system disease with blood-brain barrier opening
血脑屏障开放性中枢神经系统疾病神经干细胞分化的分子机制
- 批准号:
457163957 - 财政年份:2021
- 资助金额:
$ 46.35万 - 项目类别:
Heisenberg Grants
Acquisition mechanism of brain-specific properties for regulatory T cells in central nervous system diseases
中枢神经系统疾病中调节性T细胞脑特异性特性的获取机制
- 批准号:
21K06951 - 财政年份:2021
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of blood-brain barrier transparent artificial nanoparticles for the treatment of central nervous system diseases
血脑屏障透明人工纳米粒子的研制用于治疗中枢神经系统疾病
- 批准号:
20J20737 - 财政年份:2020
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Drug development of central nervous system diseases using dynamic three-dimensional in vitro blood-brain barrier model
利用动态三维体外血脑屏障模型进行中枢神经系统疾病药物开发
- 批准号:
20KK0254 - 财政年份:2020
- 资助金额:
$ 46.35万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
A new drug-delivery method to the central nervous system: study on novel proteins that regulate drug-permeability in the blood-brain barrier
一种新的中枢神经系统药物输送方法:调节血脑屏障药物渗透性的新型蛋白质的研究
- 批准号:
20K21586 - 财政年份:2020
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)