Nonparametric depth-based methods for analyzing high-dimensional data. Applications to biomedical research
用于分析高维数据的基于非参数深度的方法。
基本信息
- 批准号:9807861
- 负责人:
- 金额:$ 21.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-16 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAreaBioinformaticsBiomedical ResearchBody mass indexBrainBrain imagingCardiovascular systemChildChildhoodClassificationClinicalCollaborationsCollectionComplexComputing MethodologiesDataData AnalysesData CollectionData SetDetectionDevelopmentDiagnosisDimensionsDiseaseEndocrinologistFunctional ImagingFutureGoalsGrowthHealthHealth SciencesImageImaging DeviceImaging technologyIndividualInstitutesLeadLocationMajor Depressive DisorderMeasuresMedicalMental disordersMethodologyMethodsModelingMorbid ObesityMultivariate AnalysisNeurosciencesNew YorkNonparametric StatisticsOutcomePatternPopulationPositron-Emission TomographyProcessPublic HealthResearchResearch PersonnelResearch Project GrantsResearch ProposalsSamplingShapesSignal TransductionStatistical MethodsStructureTaxonomyTechniquesTest ResultTestingTweensUniversitiesVisualization softwareWorkbaseclinical Diagnosisclinically relevantearly childhoodearly-onset obesityfunctional grouphigh dimensionalityindexingmultidimensional dataneurophysiologynovelnovel strategiesobesity in childrenpediatriciantooluser-friendly
项目摘要
PROJECT SUMMARY
Technological development in many emerging research fields has provided us with large
collections of data of extraordinary complexity. Brain imaging technology, for example,
can generate complex collections of signals from individuals in different
neurophysiological states or clinical conditions. Developing new statistical tools to
analyze these rich data sets has become a limiting factor for the advancement of medical
diagnosis and biomedical research. The goal of this research proposal is to develop new
nonparametric and robust methods for analyzing general functional data with complicated
structure, such as images, using the idea of depth. In the last two decades there has been
an intensive development of notions of data depth, which have become powerful
nonparametric tools for analyzing multivariate and functional data. The methods proposed
in this project are based on a notion of data depth for general functions and the sample
rank-order it provides. Robust nonparametric statistics are particularly relevant in this
setting since usually few assumptions can be made about the data generating process
and potential outliers, which may be very difficult to detect, can affect the analysis in many
different ways. A taxonomy of the different possible types of outliers and
exploratory/visualization tools for detecting them will be developed. New approaches
based on novel envelope tests for checking if different groups of functions or images
come from the same distribution are proposed and will be studied. Recently, the PI has
started collaborating with investigators at New York State Psychiatric Institute, led by Dr.
Todd Ogden, on a data set that consists of positron emission tomography (PET) brain
images from a sample of individuals with major depressive disorders and a sample of
controls. The PI has also been working with Dr. Vidhu Thaker, a pediatrician at Columbia
University, on analyzing body mass index (BMI) trajectories of children with different
degrees of severe early childhood obesity. The methods introduced in this project will
extract from these data sets information of clinical relevance far beyond what has been
accomplished so far. In particular, the proposed depth-based nonparametric methods will
be used to: 1) rank a sample of functions from center-outwards, 2) identify outliers in the
data set and 3) develop nonparametric envelope tests for groups differences and identify
patterns. We believe that this work will boost the progress in different areas of
biomedicine.
项目摘要
许多新兴研究领域的技术发展为我们提供了大量的
极其复杂的数据集合。例如,大脑成像技术,
可以从不同的个体中产生复杂的信号集合,
神经生理状态或临床状况。开发新的统计工具,
分析这些丰富的数据集已经成为医学进步的限制因素。
诊断和生物医学研究。这项研究计划的目标是开发新的
非参数和强大的方法来分析一般功能数据与复杂的
结构,如图像,使用深度的想法。在过去的二十年里,
数据深度概念的深入发展,
用于分析多元和函数数据的非参数工具。提出的方法
基于一般函数的数据深度概念,
它提供的等级顺序。稳健的非参数统计在这方面特别重要。
因为通常很少有关于数据生成过程的假设
和潜在的异常值,这可能是非常难以检测,可以影响分析,在许多
不同的方式不同可能类型的离群值的分类,
将开发用于探测它们的探索性/可视化工具。新方法
基于新颖的包络测试,用于检查是否不同组的函数或图像
来自相同的分布被提出并且将被研究。最近,PI
开始与纽约州立精神病研究所的研究人员合作。
托德奥格登,在一个数据集,包括正电子发射断层扫描(PET)的大脑
图像从一个样本的个人与严重抑郁症和一个样本,
对照PI还与哥伦比亚的儿科医生Vidhu Thaker博士合作
大学,对分析儿童的身体质量指数(BMI)的轨迹不同,
严重的儿童早期肥胖。本项目中介绍的方法将
从这些数据集中提取出的临床相关信息远远超出了
到目前为止完成。特别是,所提出的基于深度的非参数方法将
用于:1)从中心向外排列函数样本,2)识别
数据集和3)开发组差异的非参数包络检验,并确定
模式.我们相信,这项工作将推动在不同领域取得进展,
生物医药
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Lopez-Pintado其他文献
Sara Lopez-Pintado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant