Laser Sealing and Cutting of Vascular Tissues

血管组织的激光封闭和切割

基本信息

项目摘要

Abstract Conventional suture ligation of vascular tissues during surgery is time consuming and skill intensive. Use of energy-based devices enables more rapid and efficient vessel and tissue ligation to maintain hemostasis during surgery than standard sutures and mechanical clips, which leave foreign objects in the body and disrupt the procedure through the need to exchange instruments. Ultrasonic (US) and radiofrequency (RF) energy- based devices expedite a number of labor-intensive surgical procedures, including lobectomy, nephrectomy, gastric bypass, splenectomy, thyroidectomy, hysterectomy, and colectomy, with significant cost savings. However, both RF and US devices have limitations, including potential for undesirable charring and unnecessarily large collateral thermal damage zones, with thermal spread averaging greater than 1 mm. A major concern is the possibility of unintended thermal damage to adjacent critical tissue structures when performing delicate procedures in confined spaces. Additionally, the active jaw of US devices can reach temperatures in excess of 200 oC during an application and can take greater than 20 s to cool to usable temperatures before proceeding with further applications. The maximum temperatures on the active jaw of RF devices are lower (< 100 oC), but larger thermal spread is observed. Over the past 8 years, our laboratory has been developing a novel alternative method using infrared (IR) lasers for vessel sealing. Several advantages of laser-based sealing and cutting of vascular tissues compared to conventional US and RF energy-based devices include: (1) More rapid sealing and cutting of vascular tissues with seal and cut times as short as 1 s each; (2) More directed deposition of energy into tissue with collateral thermal spread of less than 1 mm; (3) Stronger vessel seals with higher burst pressures (up to 1500 mmHg); (4) An integrated device capable of optical sealing and cutting of vascular tissues without the need for a deployable mechanical blade to bisect tissue seals; (5) Safer profile with lower jaw peak temperatures (< 60 oC) compared to ultrasound (~ 200 oC) and radiofrequency (~ 100 oC) devices; (6) Sealing of large blood vessels greater than 5 mm. However, several fundamental questions remain concerning our basic understanding of the laser-tissue interactions mechanism and feasibility of our method before it can be adopted in the clinic. The following specific aims intend to answer these basic questions, thus facilitating optimization of the laser parameters and device design for sealing of vascular tissues: (1) Optical and thermal property measurements of blood vessels as a function of composition (collagen/elastin ratio), temperature, and pressure; (2) Design and testing of laparoscopic vessel sealing device, integrating optical diagnostics for confirming successful vessel closure and avoiding damage to adjacent tissue structures (e.g. nerves); (3) Direct comparison between laser, US, and RF devices in an in vivo acute pig model, to determine sealing and cutting times and quantify collateral thermal damage.
抽象的 在手术过程中,血管组织的常规缝合结扎是耗时和技能的。使用 基于能量的设备可以使更快有效的血管和组织连接能够维持止血 手术期间比标准缝合线和机械夹,这些缝合线将异物留在体内并破坏 通过需要交换工具的过程。超声波(美国)和射频(RF)能量 基于劳动密集型手术程序,包括肺切除术,肾切除术, 胃旁路,脾切除术,甲状腺切除术,子宫切除术和结肠切除术,可节省大量成本。 但是,RF和US设备都有局限性,包括潜在的不良烧焦和 不必要的大侧外热损伤带,热扩散平均大于1毫米。一个 主要关注的问题是,当相邻关键组织结构发生意外的热损害时 在狭窄的空间中执行精致的程序。此外,美国设备的主动下颚可以达到 应用过程中的温度超过200 oC,可能需要超过20 s才能冷却至可用 在进行进一步申请之前的温度。 RF活跃下颌的最高温度 设备较低(<100 oC),但观察到较大的热扩散。在过去的8年中,我们的实验室有 正在使用红外(IR)激光来开发一种新型的替代方法,以进行血管密封。几个优势 与常规的US和RF基于Energy的基于激光的密封和切割血管组织的密封和切割 设备包括:(1)用密封和切割时间短暂密封和切割血管组织 每个; (2)更多的定向能量沉积到组织中,侧支热扩散小于1 mm; (3) 较高的船只密封,具有较高的爆发压力(最高1500 mmHg); (4)一个能够的集成设备 血管组织的光学密封和切割,无需可部署的机械刀片即可 组织密封; (5)与超声(〜200 oc)相比,颌峰温度较低(<60 oC)的更安全轮廓 和射频(〜100 OC)设备; (6)大于5毫米的大血管密封。然而, 关于我们对激光组织互动的基本理解,还有几个基本问​​题仍然存在 我们的方法的机制和可行性可以在诊所采用。以下特定目标 打算回答这些基本问题,从而促进激光参数和设备设计的优化 用于密封血管组织:(1)血管的光学和热性质测量作为功能 组成(胶原蛋白/弹性蛋白比),温度和压力; (2)腹腔镜设计和测试 船舶密封装置,整合光学诊断,以确认成功的船只闭合并避免 对相邻组织结构的损害(例如神经); (3)激光,美国和RF设备之间的直接比较 在体内急性猪模型中,以确定密封和切割时间并量化附带热损伤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel M Fried其他文献

Nathaniel M Fried的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel M Fried', 18)}}的其他基金

Minimally Invasive Laser Treatment of Female Stress Urinary Incontinence
微创激光治疗女性压力性尿失禁
  • 批准号:
    8686509
  • 财政年份:
    2014
  • 资助金额:
    $ 45.3万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 45.3万
  • 项目类别:
High-throughput Imaging-integrated Vascular Model for Understanding Thromboembolism and Therapeutics Screening
用于了解血栓栓塞和治疗筛选的高通量成像集成血管模型
  • 批准号:
    10564808
  • 财政年份:
    2023
  • 资助金额:
    $ 45.3万
  • 项目类别:
Developing near-infrared responsive liquid crystal elastomers for an adjustable pulmonary artery band
开发用于可调节肺动脉带的近红外响应液晶弹性体
  • 批准号:
    10537663
  • 财政年份:
    2022
  • 资助金额:
    $ 45.3万
  • 项目类别:
Developing near-infrared responsive liquid crystal elastomers for an adjustable pulmonary artery band
开发用于可调节肺动脉带的近红外响应液晶弹性体
  • 批准号:
    10778190
  • 财政年份:
    2022
  • 资助金额:
    $ 45.3万
  • 项目类别:
Improving walking in peripheral artery disease using specially designed assistive shoes
使用专门设计的辅助鞋改善外周动脉疾病患者的行走
  • 批准号:
    10543432
  • 财政年份:
    2021
  • 资助金额:
    $ 45.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了