Aim32p; a novel multi-faceted protein in mitochondrial biogenesis
目标32p;
基本信息
- 批准号:9812708
- 负责人:
- 金额:$ 32.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnaerobic BacteriaBindingBiochemicalBiogenesisBioinformaticsC-terminalCellsCellular Stress ResponseComplexCoupledCysteineCytosolDNA DamageDefectDiseaseDisulfide LinkageDisulfidesElectron TransportElectronsEquilibriumExperimental ModelsFerredoxinFumaratesFutureGoalsHealthHomeostasisHumanHuntington DiseaseHypoxiaIn VitroInner Cell MassInstitutionIronIron-Binding ProteinsKnowledgeLeadLearningLipidsMalignant NeoplasmsMammalian CellMitochondriaMitochondrial DiseasesMitochondrial ProteinsMolecularMolecular ChaperonesMyopathyNeuropathyOrganellesOxidantsOxidation-ReductionOxidoreductaseOxygenParkinson DiseasePathologyPathway interactionsPhysiologicalPhysiological ProcessesPhysiologyPlayProcessProtein ImportProtein translocationProteinsProteomePublic HealthReactionRecombinant Delta ChemokineReportingResearchRespiratory ChainRoleSaccharomyces cerevisiaeSaccharomycetalesSeminalSeriesSpecific qualifier valueStructureStudentsSulfhydryl CompoundsSystemTXN geneTranslatingTwin Multiple BirthWorkYeastsantioxidant enzymebiological adaptation to stressblastocystcareercytochrome cdefense responseexperienceglutaredoxin 2hands on researchhuman embryonic stem cellhydroxyureain vivoinsightmitochondrial dysfunctionnon-Nativenoveloxidationperoxiredoxin 2preventprotein complexreceptorreproductive tractsulfhydryl oxidaseundergraduate studentvector
项目摘要
PROJECT SUMMARY
Mitochondrial biogenesis relies on efficient protein import as most mitochondrial proteins are imported
via protein import pathways after synthesis in the cytosol. The mitochondrial intermembrane space (IMS)
assembly (MIA) pathway that specifically imports proteins into the IMS is unique in that oxidative folding drives
import and folding of target proteins. Specifically, a series of well-studied thiol-disulfide exchange reactions
carried out by the two main components of the MIA pathway, namely Erv1 and Mia40 dictate vectorial
translocation into the mitochondrial IMS. Studies have shown that several non-classical substrates, which do
not possess the twin CX3C or CX9C motifs, utilize this pathway and importantly, connect the MIA pathway with
other vital processes in the IMS, unrelated to oxidative folding. Hence, the MIA pathway is highly relevant in
pathology of a spectrum of diseases such as, myopathies, neuropathies, Huntington’s disease, ALS and
cancer. However, several unanswered questions remain. With the growing spectrum of substrates of this
pathway, there is a need to understand the underlying molecular mechanisms. The MIA pathway must adapt to
redox changes via interactions with antioxidant enzymes involved in reductive reactions in the IMS (thioredoxin
1, peroxiredoxin, and glutaredoxin 2). However, the role of these redox-balancing systems with the MIA
machinery is not well known, and more notably, other reductive mechanisms may exist in the IMS. Finally,
because MIA pathway is operational under anaerobic conditions, there must be additional electron acceptors.
The goal of this undergraduate-driven proposal is to investigate the function of the newly identified
Erv1-interacting protein, Aim32p in the experimental model, the budding yeast Saccharomyces cerevisiae.
Preliminary studies strongly suggest that Aim32p is important for protein translocation across multiple
translocons, stabilizes several native protein complexes, and belongs to a class of proteins, termed as
thioredoxin-like ferredoxins (Fds); functions of which are unknown but range from electron shuttling to redox
sensing. Because of its unique placement in the IMS, it is imperative to examine mechanisms by which Aim32p
could affect multiple important mitochondrial processes of import, electron transfer, and have a regulatory role
in redox. Three specific proposal aims that utilize a combination of biochemical and bioinformatic approaches
will be undertaken: In Aim 1 role of Aim32p within the MIA pathway will be explored. In Aim 2, biochemical
studies to validate if Aim32p is a Fe-S protein, identification of key cysteine residues, and pathways crucial for
its cellular stress response, will be performed. Finally, Aim 3 will elucidate the Aim32p interaction network.
Upon successful completion, this work will provide exciting new information on the function of a multi-
faceted mitochondrial protein and advance our fundamental knowledge of the process of protein translocation.
This research will have a broad impact on public health because these mechanistic studies will provide key
insights into how defects in mitochondrial biogenesis lead to disease.
项目摘要
线粒体生物发生依赖于有效的蛋白,因为大多数线粒体蛋白是进口的
通过蛋白导入途径在细胞质中合成后。线粒体膜间空间(IMS)
专门将蛋白质进口到IMS的组装(MIA)途径是独一无二的
目标蛋白的导入和折叠。具体而言,一系列研究充分的硫硫化物交换反应
由MIA途径的两个主要组成部分进行,即ERV1和MIA40决定了矢量
转移到线粒体IMS中。研究表明,有几种非古典基材
不具备双CX3C或CX9C图案,使用此途径,重要的是,将MIA途径连接起来
IMS中的其他重要过程与氧化折叠无关。因此,MIA途径在
多种疾病的病理学,例如肌病,神经病,亨廷顿氏病,ALS和
癌症。但是,仍然存在一些未解决的问题。随着底物的日益增长
途径,需要了解潜在的分子机制。 MIA途径必须适应
通过与参与IMS中反应减少的抗氧化酶相互作用(硫氧还蛋白)的氧化还原变化(硫氧还蛋白
1,过氧蛋白和谷蛋白2)。但是,这些氧化还原平衡系统与MIA的作用
机械不是众所周知的,更值得注意的是,IMS中可能存在其他减少的机制。最后,
由于MIA途径在厌氧条件下运行,因此必须有其他电子受体。
该本科驱动的建议的目的是研究新确定的
ERV1相互作用蛋白,实验模型中的AIM32P,出现的酵母菌酿酒酵母。
初步研究强烈表明,AIM32P对于多个蛋白质易位很重要
转运,稳定几种天然蛋白质复合物,属于一类蛋白质,称为
硫氧还蛋白样铁毒素(FDS);其功能是未知的,但范围从电子穿梭到氧化还原
感应。由于其在IMS中的独特位置,必须检查AIM32P的机制
可能影响多个重要的进口,电子传输的线粒体过程,并具有调节作用
在氧化还原中。三个特定的建议旨在利用生化和生物学方法的结合
将进行:将探索AIM32P在MIA途径中的AIM 1角色。在AIM 2,生化
研究验证AIM32P是否为Fe-S蛋白,鉴定关键半胱氨酸残基以及对途径至关重要的研究
将进行其细胞应力反应。最后,AIM 3将阐明AIM32P交互网络。
成功完成后,这项工作将提供有关多种功能的令人兴奋的新信息
面积的线粒体蛋白质,并提高了我们对蛋白质易位过程的基本知识。
这项研究将对公共卫生产生广泛的影响,因为这些机械研究将提供关键
深入了解线粒体生物发生的缺陷如何导致疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deepa Vinay Dabir其他文献
Deepa Vinay Dabir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deepa Vinay Dabir', 18)}}的其他基金
Study of redox regulated pathways in the mitochondrion
线粒体氧化还原调节途径的研究
- 批准号:
7615235 - 财政年份:2009
- 资助金额:
$ 32.38万 - 项目类别:
Study of redox regulated pathways in the mitochondrion
线粒体氧化还原调节途径的研究
- 批准号:
7916668 - 财政年份:2009
- 资助金额:
$ 32.38万 - 项目类别:
相似国自然基金
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
- 批准号:52300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:82204251
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
微氧环境下兼性厌氧菌和产甲烷菌降解长链脂肪酸的协同机制
- 批准号:52170037
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
兼性厌氧菌JPG1在不同氧条件下对铜胁迫的抗性机制与调控
- 批准号:52070037
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Harnessing iron acquisition to hinder enterobacterial pathogenesis
利用铁的获取来阻碍肠细菌的发病机制
- 批准号:
10651432 - 财政年份:2023
- 资助金额:
$ 32.38万 - 项目类别:
Metabolic modulation of Fusobacterium nucleatum virulence
具核梭杆菌毒力的代谢调节
- 批准号:
10681729 - 财政年份:2023
- 资助金额:
$ 32.38万 - 项目类别:
Novel Nanoligomer-Based Therapeutics for Inflammatory Bowel Disease
基于纳米低聚物的新型炎症性肠病治疗方法
- 批准号:
10600350 - 财政年份:2022
- 资助金额:
$ 32.38万 - 项目类别:
The role of a Clostridioides difficile P-type ATPase in ferrosome formation and its impact on cellular physiology and pathogenesis
艰难梭菌 P 型 ATP 酶在铁体形成中的作用及其对细胞生理学和发病机制的影响
- 批准号:
10428260 - 财政年份:2022
- 资助金额:
$ 32.38万 - 项目类别:
The Role of Glutamine Metabolism for P. gingivalis-Induced Non-Canonical Autophagy in Epithelial Cells
谷氨酰胺代谢对牙龈卟啉单胞菌诱导的上皮细胞非典型自噬的作用
- 批准号:
10537625 - 财政年份:2022
- 资助金额:
$ 32.38万 - 项目类别: