The biophysical roles of hair cell and calyx afferent ion channels in synaptic transmission between vestibular receptors and afferent nerves in mammals.
毛细胞和花萼传入离子通道在哺乳动物前庭受体和传入神经之间突触传递中的生物物理作用。
基本信息
- 批准号:9813728
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAccelerationAction PotentialsAddressAnteriorArchitectureAreaAutonomic nervous system disordersBiologicalBiophysicsCellsClosure by clampComplexCouplingDevelopmentDiseaseDizzinessElectrodesElementsEnvironmentEpitheliumEquilibriumExposure toFaceFrequenciesFunctional disorderFutureGenerationsGeometryGlutamatesHair CellsHouse miceIn SituIon ChannelIonsMammalsMechanical StimulationMechanicsMembrane PotentialsMicroscopicMusNeurotransmittersOrganPerilymphPeriodicityPeripheralPhysiologyPotassiumPreparationPropertyReceptor CellResearchRiskRoleSemicircular canal structureSensory HairStimulusStructureSynapsesSynaptic CleftSynaptic TransmissionSystemTestingTurtlesType I Hair CellType II Hair CellVariantVertigoafferent nervebasebiophysical propertiescell envelopecell typedriving forceexperienceexperimental studyextracellulargenetic manipulationin vivoinnovationotoconiapostsynapticquantumrate of changereceptorreconstructionresponsesignal processingtransmission processvoltage
项目摘要
Project Summary
Prior vestibular research has shown that afferent responses from semicircular canals and otolith organs deviate
from the coherent mechanical stimulation imparted by the overlying accessory structures. This suggests further
signal processing by hair cells (HCs) and primary afferent conductances, and by the HC–afferent synapse.
Processing is complicated by the parallel modes of synaptic transmission between HCs and afferents, and the
convergence of multiple HCs onto single afferents. Type I HCs are enveloped by an afferent calyx, creating a
cup-shaped cleft between the two elements. By contrast, type II HCs synapse onto bouton endings and/or the
external face of a calyx, with relatively small areas of cellular apposition. Further complexity is conferred by three
classes of HC-to-afferent convergence. In the simplest configuration, HCs converge onto an afferent solely via
bouton endings. Increased complexity is found at calyceal endings, either as simple calyces enveloping a single
HC or as complex calyces where the afferent encompasses two or more HCs. The highest complexity occurs at
dimorphic endings that contact both type I and II HCs via a combination of bouton and inner– and outer–face
calyceal synapses. Prior experiments in turtles have shown that for calyceal endings, rapid excitatory synaptic
transmission, via glutamatergic AMPA receptors, is modulated by K+, H+, and Ca2+ accumulation. In response to
HC depolarization, there are dynamic changes in ion concentration in the cleft. These in turn impact responses
in both the type I HCs and their afferents due to changes in the equilibrium potentials and driving forces for
conductances facing the cleft. As a result, properties of these calyceal contacts are significantly different from
those for HC and afferent conductances bathed in the bulk perilymph. Consequently, prior single-electrode
biophysical experiments on either HCs or their afferents in situ, or using isolated cells, have been unable to
dissect the contributions of HCs and afferents resulting from reciprocal interactions created by the unique volume
of the synaptic cleft coupling the two. I now have preliminary biophysical results on isolated anterior semicircular
canal epithelia in the mouse, Mus musculus. These experiments demonstrate that I will be able to extend and
refine the development of a mammalian preparation in which I can characterize the ionic environment of the
synaptic cleft and the biophysical characteristics of synaptic transmission between HCs and afferents under
conditions where the membrane potentials of the HC and its associated afferent are controlled simultaneously.
I will focus on two areas: (1) the gating of type I HC conductances exposed to the dynamic environment of the
synaptic cleft; and (2) the integration of synaptic inputs from type I HCs on the internal face of the calyx and
type II HCs synapsing either on the external face of the calyx, or on bouton endings of dimorphic afferents.
项目摘要
先前的前庭研究表明,半规管和耳石器官的传入反应偏离
从由覆盖的附属结构给予的连贯的机械刺激。这进一步表明,
毛细胞(HC)和初级传入传导的信号处理,以及HC-传入突触的信号处理。
HC和传入神经之间突触传递的平行模式使处理复杂化,
多个HC会聚到单个传入上。I型毛细胞被传入萼包裹,形成一个
两个元素之间的杯状裂缝。相比之下,II型HC突触到终末和/或终末上。
一花萼的外部面,具相对小的细胞并置的区域。进一步的复杂性是由三个
类HC到传入收敛。在最简单的配置中,HC仅通过
饰扣结尾。增加的复杂性被发现在花萼的末端,或者作为简单的花萼包围一个单一的
HC或复杂的肾盏,其中传入包括两个或更多的HC。最高的复杂性发生在
通过终扣和内、外表面的组合与I型和II型HC接触的二形末端
萼突触先前在海龟身上的实验已经表明,对于花萼末梢,快速兴奋性突触
通过谷氨酸能AMPA受体的传递受到K+、H+和Ca 2+积累的调节。响应于
HC去极化时,间隙中离子浓度发生动态变化。这些反过来又影响着应对措施
由于平衡电位和驱动力的变化,I型HC和它们的传入神经中
面对裂缝的电导。因此,这些肾盏接触的性质与
那些HC和传入电导沐浴在散装外淋巴液。因此,现有的单电极
对HC或其传入神经进行的原位生物物理实验,或使用分离细胞的生物物理实验,
剖析HCs和传入神经的贡献,这些贡献来自独特体积产生的相互作用
连接两者的突触间隙我现在有了孤立性前半月板的初步生物物理结果
小家鼠耳道上皮。这些实验表明,我将能够扩展和
完善的哺乳动物制备的发展,其中我可以表征的离子环境的
突触间隙和条件下毛细胞与传入纤维之间突触传递的生物物理特性
同时控制HC及其相关传入神经的膜电位的条件。
我将集中在两个方面:(1)门控的I型HC电导暴露在动态环境的
突触间隙;和(2)来自I型毛细胞的突触输入整合在花萼的内表面上,
II型毛细胞在花萼的外表面或在二形传入纤维的终末上形成突触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donatella Contini其他文献
Donatella Contini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donatella Contini', 18)}}的其他基金
The biophysical roles of hair cell and calyx afferent ion channels in synaptic transmission between vestibular receptors and afferent nerves in mammals.
毛细胞和花萼传入离子通道在哺乳动物前庭受体和传入神经之间突触传递中的生物物理作用。
- 批准号:
10201561 - 财政年份:2019
- 资助金额:
$ 15.99万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




