Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution

项目 1:对无创成像和药物分配之间的接口进行建模

基本信息

项目摘要

Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution SUMMARY Dogma in clinical neuro-oncology holds that Gadolinium (Gd) contrast on magnetic resonance imaging (MRI) in tumor regions confirms that the blood-brain barrier (BBB) is locally compromised, and thus sufficient levels of drug are being distributed within these tumor regions. However, drug distribution data indicate the importance of the local microenvironmental heterogeneity and other physical factors that lead to differential distribution of therapeutic agents relative to Gd contrast. Non-invasively acquired imaging features can provide a snapshot of tumor microenvironment and ultimately a better understanding of drug distribution. The goal of this project is to develop and validate a “minimal” model that will capture intra- and inter-tumor heterogeneity to predict clinically relevant levels of drug distribution using routine imaging. In this project, we will use a combination of patient data, GBM patient-derived xenografts (PDXs), matrix-assisted laser desorption/ionization mass spectroscopy imaging (MALDI-MSI), and stimulated raman spectroscopy (SRS) to quantify the differences in drug distribution within and across tumors and, in doing so, develop a computational framework for predicting the efficacy of BBB-penetrant and BBB-impenetrant drugs for the treatment of GBMs. Our hypothesis is that mathematical models based on multiparametric high content imaging techniques will predict spatially distinct drug distribution patterns in invasive primary and metastatic brain tumor models for both small molecule and macromolecular therapeutics, and therefore be pivotal to predicting the in vivo efficacy of targeted therapies. The aims of this project are: Aim 1 - build a computational framework that quantitatively connects imaging features with differences in drug distribution within and across tumors and Aim 2 - build a computational framework that quantitatively connects differences in drug distribution with imageable response within and across tumors. The first aim involves experiments to quantify differences in drug distribution across tumors in a series of PDXs with MALDI MSI, physical tissue features with SRS, development/calibration of imaging-driven models for drug distribution incorporating BBB permeability, and extending our results to patients through a Phase 0 trial. The second aim involves experiments to investigate treatment response using BLI imaging, development/calibration of models of treatment response connecting drug distribution and tumor kinetics, and extending our results to patients by determining sub-cohorts of patients most likely to respond to therapies. This project will provide a quantitative connection between imaging features and drug distribution at levels sufficient to predict heterogeneous treatment response across patients. The ultimate vision is to provide clinicians an accessible decision-making tool to help choose relevant targeted therapies that will be tailored for an individual GBM patient.
项目1:无创成像和药物分配之间的接口建模 总结 临床神经肿瘤学中的教条认为,在神经系统中,磁共振成像(MRI)上的钆(Gd)造影剂在神经系统中的作用是非常重要的。 肿瘤区域证实血脑屏障(BBB)局部受损,因此足够水平的 药物分布在这些肿瘤区域内。然而,药物分布数据表明, 当地微环境的异质性和其他物理因素,导致差异分布, 相对于Gd造影剂的治疗剂。非侵入性获取的成像特征可以提供快照 肿瘤微环境,最终更好地了解药物分布。这个项目的目标是 开发和验证一个“最小”模型,该模型将捕获肿瘤内和肿瘤间的异质性, 使用常规成像的临床相关药物分布水平。在这个项目中,我们将使用以下组合: 患者数据,GBM患者源性异种移植物(PDX),基质辅助激光解吸/电离质谱 光谱成像(MALDI-MSI)和受激拉曼光谱(SRS)来量化 药物在肿瘤内和肿瘤间的分布,并在此过程中开发一个计算框架,用于预测 血脑屏障渗透剂和血脑屏障非渗透剂治疗GBM的疗效。 我们的假设是,基于多参数高内涵成像技术的数学模型将 在侵袭性原发性和转移性脑肿瘤模型中预测空间上不同的药物分布模式, 小分子和大分子治疗剂,因此是预测体内 靶向治疗的有效性。这个项目的目标是:目标1 -建立一个计算框架, 定量地将成像特征与肿瘤内和肿瘤间的药物分布差异联系起来, 2.建立一个计算框架,定量地将药物分布的差异与可成像的药物分布联系起来。 肿瘤内和肿瘤间的反应。第一个目标是通过实验来量化药物之间的差异, 在一系列PDX中的肿瘤分布与MALDI MSI,物理组织特征与SRS, 开发/校准结合BBB渗透性的药物分布的成像驱动模型,以及 通过0期试验将我们的结果推广到患者身上。第二个目标是通过实验来研究 使用BLI成像的治疗反应,开发/校准治疗反应模型, 药物分布和肿瘤动力学,并通过确定 最有可能对治疗有反应的患者。该项目将提供成像之间的定量联系 特征和药物分布水平足以预测患者的异质性治疗反应。 最终的愿景是为临床医生提供一个可访问的决策工具,以帮助选择相关的靶向治疗。 将针对单个GBM患者量身定制的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristin R Swanson其他文献

Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma
基于图像的侵袭性指标可预测替莫唑胺辅助治疗原发性胶质母细胞瘤的反应
  • DOI:
    10.1101/509281
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Massey;Haylye White;P. Whitmire;Tatum Doyle;S. Johnston;K. Singleton;P. Jackson;A. Hawkins;B. Bendok;A. Porter;S. Vora;J. Sarkaria;M. Mrugala;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity
数学模型在临床前胶质母细胞瘤中的补充作用:区分药物输送不良和药物不敏感
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
放射基因组学中的不确定性定量:胶质母细胞瘤中的 EGFR 扩增
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li
  • 通讯作者:
    Jing Li
Response to "Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas".
对“肿瘤细胞寻找谷氨酸:IDH1 突变神经胶质瘤侵袭性增加的另一种解释”的回应。
  • DOI:
    10.1093/neuonc/nou290
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson

Kristin R Swanson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristin R Swanson', 18)}}的其他基金

MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
  • 批准号:
    10729423
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
MOSAIC: Administrative Core
MOSAIC:行政核心
  • 批准号:
    10729421
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
MOSAIC: Biospecimen Core
MOSAIC:生物样本核心
  • 批准号:
    10729425
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution
项目 1:对无创成像和药物分配之间的接口进行建模
  • 批准号:
    9187652
  • 财政年份:
    2016
  • 资助金额:
    $ 28.08万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8605773
  • 财政年份:
    2012
  • 资助金额:
    $ 28.08万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8123111
  • 财政年份:
    2009
  • 资助金额:
    $ 28.08万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8515534
  • 财政年份:
    2009
  • 资助金额:
    $ 28.08万
  • 项目类别:
E=mc2: Environment-Driven Mathematical Modeling for Clinical Cancer Imaging
E=mc2:环境驱动的临床癌症成像数学模型
  • 批准号:
    8555189
  • 财政年份:
    2009
  • 资助金额:
    $ 28.08万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    7730125
  • 财政年份:
    2009
  • 资助金额:
    $ 28.08万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    7905757
  • 财政年份:
    2009
  • 资助金额:
    $ 28.08万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了