(PQC2) Optical Hallmarks of Aggressive Clones Within Oral Field Cancerization
(PQC2) 口腔癌化中侵袭性克隆的光学标志
基本信息
- 批准号:9319642
- 负责人:
- 金额:$ 64.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAreaBiological MarkersBiopsyCancer DetectionCancerousCarcinomaCellsChemopreventive AgentCicatrixClassificationClinicalClinical ResearchClone CellsComplexDataDevelopmentDiagnosisDiagnosticDimensionsDysplasiaEarly DiagnosisFluorescenceGoalsHistologyImageImaging DeviceIndividualInflammationLesionLightLightingLinkLongitudinal StudiesLoss of HeterozygosityMalignant - descriptorMalignant NeoplasmsMeasuresMethodsMicroscopyModalityMolecularMolecular AnalysisMolecular CarcinogenesisMonitorMouth NeoplasmsMulti-modal optical imagingMultimodal ImagingMutationNeoplasm MetastasisNeoplasmsNewly DiagnosedNuclearOpticsOralOral cavityOral mucous membrane structureOrganOutcomePathologicPatientsPerformancePermeabilityPhenotypePremalignantProcessPropertyRecurrent diseaseRegimenResearchResolutionRiskRisk AssessmentScreening for Oral CancerSensitivity and SpecificitySevere dysplasiaSiteSpecificityStem cellsSurfaceSurvival RateTechniquesTechnologyTimeTissuesTranslationsTumor InitiatorsUnnecessary SurgeryVisualalcohol exposurebasecancer stem cellcarcinogenesiscosthigh resolution imaginghigh riskimaging biomarkerimaging systemimprovedin vivoinsightmalignant mouth neoplasmmicroendoscopymolecular markermorphometryneoplasticnovelnuclear imagingoptical imagingoral carcinogenesisoral lesionoral premalignancyoutcome forecastphysical propertypoint of carepredictive markerpredictive modelingpreneoplastic cellpublic health relevanceresponsescreeningspatial relationshiptissue preparationtobacco exposuretooltreatment responsetumor progression
项目摘要
DESCRIPTION (provided by applicant): Oral cancer is the 6th most common cancer worldwide. Despite the easy accessibility of the oral cavity for screening, oral cancer has one of the lowest 5-year survival rates of all cancers. Oral cancer is thought to arise as a result of fied cancerization, where, often in response to tobacco and alcohol exposure, wide areas of the mucosal surface develop subclinical carcinogenetic changes. The poor outcomes of oral cancer arise primarily because: (1) most patients are diagnosed at a late stage since the molecular changes that put patients at risk of neoplasia often do not give rise to clinically visible lesions and (2) a large fraction of patients treated for oral cancer develop subsequent cancers because areas of field cancerization persist following treatment and are not clinically visible. The development and progression of oral cancer is ultimately a molecular process, reflecting a complex succession of genetic changes within the field-at-risk. Ultimately tumor-initiating stem cells give rise to aggressive clones within a mucosal field-at-risk, resulting in malignant progression. While much progress has been made to understand the molecular alterations associated with oral cancer progression, this research has not yet led to improvements in early detection mainly because molecular analysis methods are costly and can only be carried out with tissues obtained from invasive biopsies. There is increasing evidence to suggest that key molecular alterations result in phenotypic changes that can be measured clinically at the point-of-care. Recent studies by our group and others suggest that multi-modal optical imaging can image changes in tissue fluorescence and nuclear morphometry to identify high grade oral precancer and early cancer with significantly improved sensitivity and specificity compared to visual examination; moreover, changes in optical properties correlate strongly with molecular markers associated with neoplastic progression. The goal of this proposal is to validate the ability of multimodal optical imaging to improve early detection and to determine whether risk-related optical markers (RROMs) can be used to predict the likelihood of malignant progression. We will perform longitudinal studies in patients with oral lesions using cutting edge autofluorescence and microendoscopy technology with automated diagnostic algorithms. In an animal model of oral cancer, we will combine optical imaging and novel tissue preparation techniques, which render tissue optically transparent and macromolecular permeable, to assess the temporal and spatial correlations of molecular alterations to phenotypic changes during development and progression of oral cancer. With this data, we propose to develop and validate predictive models relating RROMs to malignant transformation.
描述(申请人提供):口腔癌是全球第六大常见癌症。尽管口腔很容易进行筛查,但口腔癌是所有癌症中五年生存率最低的癌症之一。口腔癌被认为是由于癌变而产生的,通常是由于吸烟和酒精暴露,粘膜表面的大片区域发展为亚临床致癌变化。口腔癌预后差的主要原因是:(1)大多数患者在晚期才被诊断出来,因为使患者面临肿瘤风险的分子变化通常不会导致临床上可见的病变,(2)大部分接受口腔癌治疗的患者会发展为后续癌症,因为治疗后局部癌变区域仍然存在,临床上看不到。口腔癌的发生和发展归根结底是一个分子过程,反映了高危领域内一系列复杂的基因变化。最终,启动肿瘤的干细胞会在有风险的粘膜区域内产生侵袭性克隆,导致恶性进展。虽然在了解与口腔癌进展相关的分子变化方面取得了很大进展,但这项研究尚未导致早期检测的改善,主要是因为分子分析方法成本高昂,只能对侵入性活检获得的组织进行分析。越来越多的证据表明,关键的分子改变会导致表型改变,这种改变可以在护理点进行临床测量。我们团队和其他人最近的研究表明,多模式光学成像可以成像组织荧光和核形态计量学的变化,以识别高级别口腔癌前病变和早期癌症,与肉眼检查相比,具有显著提高的敏感性和特异性;此外,光学特性的变化与肿瘤进展相关的分子标志物具有很强的相关性。这项建议的目的是验证多模式光学成像改善早期检测的能力,并确定风险相关光学标记(RROM)是否可以用于预测恶性进展的可能性。我们将使用尖端的自动荧光和显微内窥镜技术以及自动诊断算法对口腔病变患者进行纵向研究。在口腔癌的动物模型中,我们将结合光学成像和新的组织制备技术,使组织光学透明和大分子可渗透,以评估口腔癌发生发展过程中分子变化与表型变化的时间和空间相关性。有了这些数据,我们建议开发和验证RROMS与恶性转化相关的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ann M Gillenwater其他文献
Ann M Gillenwater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ann M Gillenwater', 18)}}的其他基金
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
- 批准号:
10503039 - 财政年份:2022
- 资助金额:
$ 64.06万 - 项目类别:
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
- 批准号:
10664026 - 财政年份:2022
- 资助金额:
$ 64.06万 - 项目类别:
Mobile Imaging for Oral Cancer Screening Programs in Rural US Settings
美国农村地区口腔癌筛查项目的移动成像
- 批准号:
10396044 - 财政年份:2021
- 资助金额:
$ 64.06万 - 项目类别:
Mobile Imaging for Oral Cancer Screening Programs in Rural US Settings
美国农村地区口腔癌筛查项目的移动成像
- 批准号:
10193591 - 财政年份:2021
- 资助金额:
$ 64.06万 - 项目类别:
Precision Optical Guidance for Oral Biopsy Based on Next-Generation Hallmarks of Cancer
基于下一代癌症标志的口腔活检精密光学引导
- 批准号:
10565685 - 财政年份:2020
- 资助金额:
$ 64.06万 - 项目类别:
Precision Optical Guidance for Oral Biopsy Based on Next-Generation Hallmarks of Cancer
基于下一代癌症标志的口腔活检精密光学引导
- 批准号:
10326402 - 财政年份:2020
- 资助金额:
$ 64.06万 - 项目类别:
(PQC2) Optical Hallmarks of Aggressive Clones Within Oral Field Cancerization
(PQC2) 口腔癌化中侵袭性克隆的光学标志
- 批准号:
8912436 - 财政年份:2014
- 资助金额:
$ 64.06万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7290903 - 财政年份:2007
- 资助金额:
$ 64.06万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7463924 - 财政年份:2007
- 资助金额:
$ 64.06万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7615710 - 财政年份:2007
- 资助金额:
$ 64.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 64.06万 - 项目类别:
Continuing Grant














{{item.name}}会员




