An Inexpensive Monitoring Network to Assess Workplace Aerosol Exposures
用于评估工作场所气溶胶暴露的廉价监测网络
基本信息
- 批准号:9293134
- 负责人:
- 金额:$ 43.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Personal exposure sampling is the primary means to ensure that chemical and physical hazards in the workplace are maintained below occupational exposure limits. Typically few exposures are measured to represent a large working population because personal sampling is expensive and time consuming. Hence, most decisions regarding the extent to which workers are protected are based on extremely sparse data. Incorporation of distributed networks of inexpensive sensors has the potential to provide dramatic gains in the information content available for understanding the components of exposure variability, which are critical to evaluating and mitigating workplace risk. The laboratory and field work outlined in
this application will develop and use a novel distributed monitoring network based on newly available, inexpensive aerosol sensors with worker tracking to estimate personal exposures. With successful completion of the proposed work, there will be many benefits, including information on operating and performance of inexpensive sensors and a network- deployable monitor (Aim 1), a method to optimize the number and placement of monitors within an occupational setting (Aim 2), and a method to integrate network and worker tracking data to estimate personal exposures (Aim 3). The new exposure assessment framework emerging from this development work will be applied in two year-long field studies at industrial workplaces to demonstrate its general utility and assess its reliability in diverse situations. Analyses of the dta from field studies is expected to demonstrate how the distributed monitoring network can be used to evaluate hazard risk at different time scales relevant to acute (e.g., 15-min) and chronic exposures (e.g., 8-hr, 40-hr, or longer; Aim 2). Further analyses conducted in Aim 3 are expected to show that network-derived personal exposures compare favorably to conventionally-measured personal exposures, approaching or meeting NIOSH criteria for method equivalence. Compared to conventional personal sampling, these new framework will enable an unprecedented increase in exposure measurements (1,000X to 10,000X). This dramatic increase in sample size, even if somewhat less accurate and precise than conventional sampling, will make comprehensive exposure assessment possible in routine industrial hygiene practice, medical surveillance, and epidemiological study. Moreover, the framework is sufficiently general to apply for any physical or chemical agent depending on sensor availability. Consequently, the results of this work will be directly applicable to many sectors of the National Occupational Research Agenda (NORA).
描述(申请人提供):个人接触采样是确保工作场所的化学和物理危害保持在职业接触限值以下的主要手段。通常情况下,很少测量到代表大量工作人口的暴露,因为个人采样既昂贵又耗时。因此,大多数关于工人受到保护的程度的决定都是基于极其稀少的数据。纳入廉价传感器的分布式网络有可能在可用于了解暴露可变性的组成部分的信息内容方面提供显著的收益,这些组成部分对于评估和减轻工作场所的风险至关重要。中概述的实验室和现场工作
这一应用程序将开发和使用一种新的分布式监测网络,该网络基于新推出的廉价气溶胶传感器,具有工人跟踪功能,以估计个人接触情况。随着拟议工作的成功完成,将有许多好处,包括关于廉价传感器和可网络部署的监视器的操作和性能的信息(目标1)、在职业环境中优化监视器的数量和放置的方法(目标2)以及整合网络和工作人员跟踪数据以估计个人暴露的方法(目标3)。这项开发工作产生的新的暴露评估框架将在两个为期一年的工业工作场所实地研究中应用,以展示其一般用途,并评估其在不同情况下的可靠性。对实地研究的DTA的分析预计将展示如何利用分布式监测网络评估与急性(例如15分钟)和慢性(例如8小时、40小时或更长时间;目标2)相关的不同时间尺度上的危险风险。在目标3中进行的进一步分析预计将显示,网络来源的个人暴露比传统测量的个人暴露更有利,接近或满足NIOSH方法等价性标准。与传统的个人抽样相比,这些新框架将使暴露测量前所未有地增加(1,000倍至10,000倍)。样本数量的急剧增加,即使精确度和精确度略低于常规采样,也将使常规工业卫生实践、医学监测和流行病学研究中的全面暴露评估成为可能。此外,根据传感器的可用性,该框架足够通用,适用于任何物理或化学试剂。因此,这项工作的结果将直接适用于国家职业研究议程(NORA)的许多部门。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Methods for Personal Exposure Monitoring for Airborne Particles.
- DOI:10.1007/s40572-015-0070-z
- 发表时间:2015-12
- 期刊:
- 影响因子:7.9
- 作者:Koehler KA;Peters TM
- 通讯作者:Peters TM
Inter-comparison of Low-cost Sensors for Measuring the Mass Concentration of Occupational Aerosols.
- DOI:10.1080/02786826.2016.1162901
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Sousan S;Koehler K;Thomas G;Park JH;Hillman M;Halterman A;Peters TM
- 通讯作者:Peters TM
Sampling Strategies for Accurate Hazard Mapping of Noise and Other Hazards Using Short-Duration Measurements.
使用短持续时间测量准确绘制噪声和其他危害的采样策略。
- DOI:10.1093/annweh/wxw025
- 发表时间:2017
- 期刊:
- 影响因子:2.6
- 作者:Koehler,KirstenA;Zhu,Jun;Wang,Haonan;Peters,ThomasM
- 通讯作者:Peters,ThomasM
Mapping Occupational Hazards with a Multi-sensor Network in a Heavy-Vehicle Manufacturing Facility.
在重型车辆制造工厂中使用多传感器网络绘制职业危害图。
- DOI:10.1093/annweh/wxy111
- 发表时间:2019
- 期刊:
- 影响因子:2.6
- 作者:Zuidema,Christopher;Sousan,Sinan;Stebounova,LarissaV;Gray,Alyson;Liu,Xiaoxing;Tatum,Marcus;Stroh,Oliver;Thomas,Geb;Peters,Thomas;Koehler,Kirsten
- 通讯作者:Koehler,Kirsten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirsten Anne Koehler其他文献
Kirsten Anne Koehler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirsten Anne Koehler', 18)}}的其他基金
BREATHE - Bridging Research, Lung Health, and the Environment - Children's Center
呼吸 - 桥梁研究、肺部健康和环境 - 儿童中心
- 批准号:
10532201 - 财政年份:2021
- 资助金额:
$ 43.76万 - 项目类别:
An Inexpensive Monitoring Network to Assess Workplace Aerosol Exposures
用于评估工作场所气溶胶暴露的廉价监测网络
- 批准号:
8755714 - 财政年份:2014
- 资助金额:
$ 43.76万 - 项目类别:
An Inexpensive Monitoring Network to Assess Workplace Aerosol Exposures
用于评估工作场所气溶胶暴露的廉价监测网络
- 批准号:
8928013 - 财政年份:2014
- 资助金额:
$ 43.76万 - 项目类别:
Statistical Analyses for Assessing Space-Time Exposure Data
评估时空暴露数据的统计分析
- 批准号:
8810710 - 财政年份:2013
- 资助金额:
$ 43.76万 - 项目类别:
Statistical Analyses for Assessing Space-Time Exposure Data
评估时空暴露数据的统计分析
- 批准号:
8111619 - 财政年份:2011
- 资助金额:
$ 43.76万 - 项目类别:
Statistical Analyses for Assessing Space-Time Exposure Data
评估时空暴露数据的统计分析
- 批准号:
8325874 - 财政年份:2011
- 资助金额:
$ 43.76万 - 项目类别:
Novel exposure metrics for assessing the effects of ultrafine and fine particulate matter on asthma in children
用于评估超细颗粒物和细颗粒物对儿童哮喘影响的新暴露指标
- 批准号:
9145680 - 财政年份:
- 资助金额:
$ 43.76万 - 项目类别:
相似海外基金
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
- 批准号:
EP/Y03693X/1 - 财政年份:2024
- 资助金额:
$ 43.76万 - 项目类别:
Research Grant
SBIR Phase II: Remote IoT Monitoring Network for Early Warning and Measurement of Structural Movements
SBIR 第二阶段:用于结构运动预警和测量的远程物联网监测网络
- 批准号:
2337470 - 财政年份:2024
- 资助金额:
$ 43.76万 - 项目类别:
Cooperative Agreement
ADA: Remote Healthcare Monitoring powered by Network Intelligence and Automation
ADA:由网络智能和自动化提供支持的远程医疗保健监控
- 批准号:
10098971 - 财政年份:2024
- 资助金额:
$ 43.76万 - 项目类别:
Collaborative R&D
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
Continuing Grant
BENCHMARKS: Building a European Network for the Characterisation and Harmonisation of Monitoring Approaches for Research and Knowledge on Soils
基准:建立欧洲网络,以表征和协调土壤研究和知识监测方法
- 批准号:
10064786 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
EU-Funded
I-Corps: Intelligent wireless sensor network platform for extended human health monitoring
I-Corps:用于扩展人体健康监测的智能无线传感器网络平台
- 批准号:
2305389 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
Standard Grant
Building a STEM research and education network of GIS and drone mapping for coastal seagrass monitoring
建立用于沿海海草监测的 GIS 和无人机测绘 STEM 研究和教育网络
- 批准号:
2315860 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
Standard Grant
IMR: MM-1C: Fine-grained Network Monitoring via Software Imputation
IMR:MM-1C:通过软件插补进行细粒度网络监控
- 批准号:
2319442 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
Standard Grant
NeTS: Small: Continuous Monitoring and Localization of Network Neutrality Violations
NeTS:小型:持续监控和定位违反网络中立性的行为
- 批准号:
2332541 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
Standard Grant
Neuronal network analysis based on artificial intelligence (AI) improves anesthesia-depth monitoring to the next generation
基于人工智能 (AI) 的神经元网络分析将麻醉深度监测提升至下一代
- 批准号:
23K08328 - 财政年份:2023
- 资助金额:
$ 43.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)