Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
基本信息
- 批准号:9445497
- 负责人:
- 金额:$ 60.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse effectsAlgorithmsAnatomyAnimalsAntiepileptic AgentsAutomobile DrivingBehavioralBrainCanis familiarisCircadian RhythmsClassificationClinicalDataData AnalyticsDevice DesignsDoseDrowsinessDrug ExposureElectrocardiogramElectroencephalographyEnvironmentEpilepsyEventFocal SeizureGoalsGrantHeart RateHigh Frequency OscillationHippocampus (Brain)HumanIndividualInjuryInvestigationLeadLearningLifeMachine LearningMethodologyModelingNeocortexPartial EpilepsiesPathologicPatientsPatternPharmaceutical PreparationsPharmacologyPhysiologicalPopulationProbabilityPsychological ImpactScalp structureSeizuresSignal TransductionSleepStagingTechniquesThalamic structureTimeTrainingValidationclinically relevantempoweredheart rate variabilityimprovednovelpsychologicpublic health relevance
项目摘要
DESCRIPTION (provided by applicant): For most individuals living with epilepsy, seizures are relatively infrequent events occupying a small fraction of their life. Despite spending as little a 0.01% of their lives having seizures (typically only minutes per month), people with epilepsy take anti-epileptic drugs (AED) daily, suffer AED related side effects, and spend their lives dreading when the next seizure will strike. The apparent randomness of seizures is associated with significant psychological consequences. In addition, despite daily AED approximately 1/3 of patients continue to have seizures. We hypothesize that epilepsy can be more effectively treated, both the seizures and their psychological impact, by providing patients with real-time seizure forecasting. Periods of low seizure probability would not require AEDs, or at least lower doses of AEDs, thus reducing AED exposure and their side effects. Periods of high seizure probability may respond to acute AED and patients could alter their activities to avoid injury. Patients would be empowered to manage their medications and life activities using reliable seizure forecasts. In this grant we investigate the hypothesis that seizures are predictable events, and pursue accurate, clinically relevant seizure forecasting using recent advances in support vector machines (SVM), data-analytic models, and Universum-SVM applied to continuous intracranial EEG (iEEG) in focal canine epilepsy. This is an initial step in establishin a new treatment paradigm for focal epilepsy, whereby the probability of seizure occurrence is continuously tracked for patient warning and intelligent responsive therapies. Naturally occurring focal canine epilepsy is an excellent model for investigation of seizure forecasting because of the clinical and electrophsyiological similarity to focal human epilepsy. This study provides a unique opportunity to study seizure forecasting in naturally occurring canine epilepsy under uniform conditions (the same environment). Importantly, dogs are large enough to accommodate devices designed for human use. The hypotheses driving this proposal are that focal seizures are not random events and there are brain states associated with low or high probability of seizure occurrence, and that these states can be reliably classified using machine learning approaches (SVM & Universum-SVM) that combine features from iEEG, behavioral state tracking, and electrocardiogram (ECG) heart rate variability. The goal of this proposal is to
develop reliable seizure forecasting (when possible) and improved understanding (data characterization) when good forecasting is not possible.
描述(由申请人提供):对于大多数癫痫患者来说,癫痫发作是相对罕见的事件,占据了他们生活的一小部分。尽管癫痫患者一生中只有0.01%的时间发生癫痫发作(通常每月只有几分钟),但癫痫患者每天都服用抗癫痫药物(AED),遭受AED相关的副作用,并且一生都在担心下一次癫痫发作的时间。癫痫发作的明显随机性与严重的心理后果有关。此外,尽管每天使用AED,仍有约1/3的患者继续癫痫发作。我们假设,通过为患者提供实时癫痫发作预测,可以更有效地治疗癫痫发作及其心理影响。癫痫发作概率低的时期不需要AED,或至少需要较低剂量的AED,从而减少AED暴露及其副作用。癫痫发作概率高的时期可能对急性AED有反应,患者可以改变他们的活动以避免损伤。患者将有权使用可靠的癫痫发作预测来管理他们的药物和生活活动。在这项研究中,我们研究了癫痫发作是可预测事件的假设,并使用支持向量机(SVM),数据分析模型和Universum-SVM应用于连续颅内EEG(iEEG)在局灶性犬癫痫的最新进展,追求准确的,临床相关的癫痫发作预测。这是为局灶性癫痫建立新的治疗模式的第一步,从而持续跟踪癫痫发作发生的概率,以向患者发出警告并进行智能响应治疗。自然发生的局灶性犬癫痫是一个很好的模型,研究癫痫发作预测,因为临床和电生理学相似的局灶性人类癫痫。这项研究提供了一个独特的机会,研究癫痫发作预测自然发生的犬癫痫在统一的条件下(相同的环境)。重要的是,狗足够大,可以容纳为人类设计的设备。驱动该提议的假设是局灶性癫痫发作不是随机事件,并且存在与癫痫发作发生的低概率或高概率相关联的大脑状态,并且这些状态可以使用机器学习方法(SVM & Universum-SVM)可靠地分类,所述机器学习方法(SVM & Universum-SVM)结合来自iEEG、行为状态跟踪和心电图(ECG)心率变异性的联合收割机特征。本提案的目的是
(在可能的情况下)进行可靠的缉获量预测,并在无法进行良好预测的情况下增进了解(数据定性)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory A Worrell其他文献
Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像
- DOI:
10.1101/2023.11.30.23299218 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rui Sun;Abbas Sohrabpour;Boney Joseph;Gregory A Worrell;Bin He - 通讯作者:
Bin He
Gregory A Worrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory A Worrell', 18)}}的其他基金
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10518240 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10629373 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9921573 - 财政年份:2015
- 资助金额:
$ 60.76万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
9238808 - 财政年份:2015
- 资助金额:
$ 60.76万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9972970 - 财政年份:2015
- 资助金额:
$ 60.76万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8448247 - 财政年份:2009
- 资助金额:
$ 60.76万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
7653568 - 财政年份:2009
- 资助金额:
$ 60.76万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8234974 - 财政年份:2009
- 资助金额:
$ 60.76万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8053265 - 财政年份:2009
- 资助金额:
$ 60.76万 - 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
- 批准号:
6832791 - 财政年份:2004
- 资助金额:
$ 60.76万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 60.76万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 60.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 60.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 60.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Studentship














{{item.name}}会员




