Reliable Seizure Prediction Using Physiological Signals and Machine Learning

使用生理信号和机器学习进行可靠的癫痫发作预测

基本信息

  • 批准号:
    10518240
  • 负责人:
  • 金额:
    $ 56.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

For most individuals living with epilepsy, seizures are relatively infrequent events occupying a small fraction of their life. Despite spending as little as 0.01% of their lives having seizures (typically only minutes per month), people with epilepsy take anti-seizure drugs (ASD) daily, suffer ASD related side effects, and spend their lives dreading when the next seizure will strike. The apparent randomness of seizures is associated with significant psychological consequences. In addition, despite daily ASD, approximately 1/3 of patients continue to have seizures. We hypothesize that epilepsy can be more effectively treated, both the seizures and their psychological impact, by providing patients with real-time seizure forecasting. There is strong evidence that focal epilepsy is associated with a variable seizure risk that may enable adaptive therapy targeting periods of high seizure probability. Periods of low seizure probability could require lower ASD doses, reducing exposure and side effects. We propose that high seizure probability states will respond to adaptive electrical brain stimulation (aEBS). In addition, patients could alter their activities during periods of high seizure probability to reduce injury and manage their ASD and activities. The hypotheses driving this proposal are that 1.) seizures can be prevented (reduced incidence) by targeted EBS therapy during the pre-ictal state 2.) seizures are not random events, and that brain states associated with low and high seizure probability can be reliably classified using machine learning methods applied to physiologic signals and used to adaptively change EBS parameters. 3.) Furthermore, we propose forecasting can be improved using multi-modal features beyond passive iEEG recordings, including active brain probing with electrical stimulation (impedance & evoked potentials), core temperature, ECG and serum immunological markers. Goal: Develop reliable seizure forecasting (>90% sensitivity) with few false positives (<1% time in warning) and demonstrate modulation of seizure risk and reduction of focal seizures using aEBS.
对于大多数患有癫痫的人来说,癫痫发作是相对罕见的事件,占癫痫发作的一小部分。 他们的生活.尽管他们一生中只有0.01%的时间癫痫发作(通常每月只有几分钟), 癫痫患者每天服用抗癫痫药物(ASD),遭受ASD相关的副作用, 担心下一次癫痫发作何时发生。癫痫发作的明显随机性与显著的 心理后果。此外,尽管每天ASD,约1/3的患者继续有 癫痫发作。我们假设癫痫可以更有效地治疗,无论是癫痫发作和他们的 通过为患者提供实时癫痫发作预测, 有强有力的证据表明,局灶性癫痫与可变的癫痫发作风险有关, 针对高癫痫发作概率时期的治疗。癫痫发作概率较低的时期可能需要较低的 ASD剂量,减少暴露和副作用。我们建议,高癫痫发作概率的国家将作出反应, 自适应脑电刺激(aEBS)。此外,患者可以改变他们的活动期间, 高癫痫发作概率,以减少损伤并管理他们的ASD和活动。 推动这一提议的假设是:(1)。癫痫发作可以通过有针对性的 发作前状态期间的EBS治疗2.)癫痫发作不是随机事件, 低和高癫痫发作概率可以使用机器学习方法可靠地分类, 生理信号,并用于自适应地改变EBS参数。3.)第三章此外,我们建议预测 可以使用被动iEEG记录以外的多模态功能(包括主动大脑探测)进行改进 电刺激(阻抗和诱发电位),核心温度,ECG和血清免疫学 标记。目标:开发可靠的癫痫发作预测(>90%的灵敏度),假阳性很少(<1%的时间)。 警告),并使用aEBS证明癫痫发作风险的调节和局灶性癫痫发作的减少。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory A Worrell其他文献

Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像

Gregory A Worrell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory A Worrell', 18)}}的其他基金

Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    10629373
  • 财政年份:
    2022
  • 资助金额:
    $ 56.46万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9445497
  • 财政年份:
    2015
  • 资助金额:
    $ 56.46万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9921573
  • 财政年份:
    2015
  • 资助金额:
    $ 56.46万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9238808
  • 财政年份:
    2015
  • 资助金额:
    $ 56.46万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9972970
  • 财政年份:
    2015
  • 资助金额:
    $ 56.46万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8448247
  • 财政年份:
    2009
  • 资助金额:
    $ 56.46万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    7653568
  • 财政年份:
    2009
  • 资助金额:
    $ 56.46万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8234974
  • 财政年份:
    2009
  • 资助金额:
    $ 56.46万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8053265
  • 财政年份:
    2009
  • 资助金额:
    $ 56.46万
  • 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
  • 批准号:
    6832791
  • 财政年份:
    2004
  • 资助金额:
    $ 56.46万
  • 项目类别:

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

A Study of Policy Convergence between Multilateral and Bilateral Donors' Support for Community Participation in Education in Cambodia
柬埔寨社区参与教育的多边和双边捐助者支持政策趋同研究
  • 批准号:
    24K05750
  • 财政年份:
    2024
  • 资助金额:
    $ 56.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bilateral ESRC/FNR: Training Executives to Enhance Employee Engagement in Government: Field Experimental Evidence from Luxembourg
双边 ESRC/FNR:培训高管以提高员工在政府中的参与度:来自卢森堡的现场实验证据
  • 批准号:
    ES/W010380/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
    Research Grant
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10654316
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
Investigating subthreshold vestibular stimulation as a strategy for rehabilitation in individuals with bilateral vestibular hypofunction
研究阈下前庭刺激作为双侧前庭功能减退患者的康复策略
  • 批准号:
    10571440
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
Conference: NSF/UKRI Bilateral Workshop on Quantum Information Science in Chemistry
会议:NSF/UKRI 化学中量子信息科学双边研讨会
  • 批准号:
    2403812
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
    Standard Grant
Factors for bilateral capital inflows into emerging market economies from advanced economies
发达经济体双边资本流入新兴市场经济体的因素
  • 批准号:
    23K01461
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Shift from Unilateral to Bilateral Sensory-Motor Connectivity in Chronic Hemiparetic Stroke
慢性偏瘫中风从单侧感觉运动连接转向双侧感觉运动连接
  • 批准号:
    10991213
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
Bilateral wheat improvement workshop with BalticWheat network
与波罗的海小麦网络双边小麦改良研讨会
  • 批准号:
    BB/T018291/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
    Research Grant
Bilateral ESRC/FNR: Banking on Europe
双边 ESRC/FNR:欧洲银行业
  • 批准号:
    ES/W000733/2
  • 财政年份:
    2023
  • 资助金额:
    $ 56.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了