Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
基本信息
- 批准号:7653568
- 负责人:
- 金额:$ 31.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArtsBiological MarkersBrainBrain regionCaliberCaringClinicalCortical ColumnDataData SetDatabasesDetectionDimensionsElectrodesElectroencephalographyElectrophysiology (science)EpilepsyEvaluationEventFreedomFrequenciesGenerationsGoalsHigh Frequency OscillationHumanHybridsLabelLaboratoriesLengthLesionLobarMapsMeasuresMiningNeocortexNeuronsNeurosciencesOperative Surgical ProceduresOutcomePatientsPerformancePropertyReceiver Operator CharacteristicsResearchResectableResectedResolutionSafetySeizuresSensitivity and SpecificitySignal TransductionSpatial DistributionStructureTestingVisualWorkbasebrain tissuecohortdetectorimprovedmeetingsmillimetermind controlneocorticalpublic health relevancespatiotemporalsuccess
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to localize human epileptic networks by characterizing their electrophysiological activity over a wide range of spatiotemporal scales. Decades of clinical intracranial EEG (IEEG) using restricted spatial (centimeter scale) and temporal (~0.5-100 Hz) bandwidth, based more on tradition than modern neuroscience, have frustrated epileptologists looking for discrete, resectable "electrographic lesions" during evaluation for epilepsy surgery. Similarly, recent efforts to apply direct brain stimulation to abort seizures after they are sufficiently established to be detected on standard clinical macroelectrodes have, so far, met with only partial success. We hypothesize that enhancing the spatial and temporal resolution of clinical intracranial EEG can improve the efficacy of epilepsy surgery and responsive brain stimulation to control seizures. Human epileptic networks produce pathological activity that ranges from seizures and spikes, generated by cubic centimeters of brain tissue, to high frequency oscillations that occur on sub-millimeter dimensions. Recent evidence suggests that important components of these signals are found at frequencies not detected by standard clinical IEEG. Using simultaneous IEEG recordings from microwire arrays and clinical macroelectrodes, our group has begun to characterize two potential signatures of epileptogenic brain, high frequency oscillations and "micro-seizures," that are outside the resolution of conventional clinical IEEG. In this application, we propose analysis of continuous, high-resolution, wide- bandwidth IEEG recorded simultaneously from microwire arrays and clinical macroelectrodes in order to localize human epileptic networks. We will correlate our findings with surgical outcome, prospectively, in a cohort of patients undergoing evaluation for epilepsy surgery. This work builds upon our established effort in Translational Neuroengineering melding state of the art epilepsy care with cutting-edge research. PUBLIC HEALTH RELEVANCE The neuronal networks of human epileptic brain are multiscale; extending from cellular assemblies organized on the scale of cortical columns (~300 - 600 <m) to large-scale networks organized over lobar structures. These pathological networks generate oscillations over a wide range of frequency (0.01 - 1000 Hz) and spatial scales not probed by clinical EEG. Our laboratory and others have identified pathological network oscillations occurring outside the range of clinical IEEG that appear to be signatures of the epileptogenic zone.
描述(由申请人提供):该提案的目标是通过在广泛的时空尺度上表征其电生理活动来定位人类癫痫网络。几十年来,临床颅内EEG(IEEG)使用有限的空间(厘米尺度)和时间(~0.5-100 Hz)带宽,更多地基于传统而不是现代神经科学,使癫痫学家在癫痫手术评估期间寻找离散的、可切除的“电描记病变”感到沮丧。类似地,在癫痫发作充分确定可以在标准临床宏电极上检测到之后,最近应用直接脑刺激来中止癫痫发作的努力到目前为止只取得了部分成功。我们假设,提高临床颅内EEG的空间和时间分辨率可以提高癫痫手术和响应性脑刺激控制癫痫发作的疗效。人类癫痫网络产生的病理活动范围从立方厘米的脑组织产生的癫痫发作和尖峰,到亚毫米尺度上发生的高频振荡。最近的证据表明,这些信号的重要组成部分是在标准临床IEEG检测不到的频率上发现的。使用来自微导线阵列和临床宏电极的同步IEEG记录,我们的研究小组已经开始表征致癫痫大脑的两个潜在特征,即高频振荡和“微癫痫发作”,这超出了传统临床IEEG的分辨率。在这个应用中,我们提出了分析连续的,高分辨率的,宽带宽的IEEG记录同时从微线阵列和临床宏电极,以本地化人类癫痫网络。我们将在一组接受癫痫手术评估的患者中前瞻性地将我们的发现与手术结果相关联。这项工作建立在我们在转化神经工程方面的既定努力之上,将最先进的癫痫护理与尖端研究融为一体。人类癫痫脑的神经元网络是多尺度的;从以皮质柱(~300 - 600 <m)的尺度组织的细胞集合延伸到以叶结构组织的大尺度网络。这些病理性网络产生在宽范围的频率(0.01 - 1000 Hz)和空间尺度上的振荡,而临床EEG没有探测到。我们的实验室和其他实验室已经确定了发生在临床IEEG范围之外的病理性网络振荡,这些振荡似乎是致痫区的特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory A Worrell其他文献
Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像
- DOI:
10.1101/2023.11.30.23299218 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rui Sun;Abbas Sohrabpour;Boney Joseph;Gregory A Worrell;Bin He - 通讯作者:
Bin He
Gregory A Worrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory A Worrell', 18)}}的其他基金
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10518240 - 财政年份:2022
- 资助金额:
$ 31.92万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10629373 - 财政年份:2022
- 资助金额:
$ 31.92万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
9445497 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9921573 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
9238808 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9972970 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8448247 - 财政年份:2009
- 资助金额:
$ 31.92万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8234974 - 财政年份:2009
- 资助金额:
$ 31.92万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8053265 - 财政年份:2009
- 资助金额:
$ 31.92万 - 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
- 批准号:
6832791 - 财政年份:2004
- 资助金额:
$ 31.92万 - 项目类别:
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
ARTS在邻苯二甲酸(2-乙基己基)酯诱导的小鼠睾丸间质细胞凋亡中的作用及机理研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:
促进肿瘤凋亡的融合蛋白CPP-TRAIL-ARTS C27的制备及机制研究
- 批准号:81372444
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
雄性锹甲的生殖对策抉择ARTs及其进化机制-基于行为与SSRs标记的整合研究
- 批准号:31201745
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ARTS: Broadening capacity for research on gall wasps in North America
ARTS:扩大北美瘿蜂研究能力
- 批准号:
2338008 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
- 批准号:
2349111 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Continuing Grant
Open Access Block Award 2024 - University of the Arts London
2024 年开放获取区块奖 - 伦敦艺术大学
- 批准号:
EP/Z532216/1 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Research Grant
Games, Heritage, Arts, & Sport: the economic, social, and cultural value of the European videogame ecosystem (GAMEHEARTS)
游戏、遗产、艺术、
- 批准号:
10104584 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
EU-Funded
Building Partnerships to Recruit Recent STEM Graduates into a Masters of Arts in Teaching Program
建立合作伙伴关系,招募应届 STEM 毕业生加入教学硕士项目
- 批准号:
2345165 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Standard Grant
Enhancing Faculty Well-being at Liberal Arts Colleges: Individual, Contextual, Institutional, and Cultural Factors
提高文理学院教师的福祉:个人、背景、制度和文化因素
- 批准号:
24K06445 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Art and Policy in the Global Contemporary: Examining the Role of the Arts in the Production of Public Policy
全球当代的艺术与政策:审视艺术在公共政策制定中的作用
- 批准号:
EP/Y036972/1 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Research Grant
地理総合における対話型鑑賞法を援用したArts-STEM型教科融合授業モデルの開発
利用综合地理学中的互动欣赏方法开发艺术-STEM型学科融合课堂模型
- 批准号:
24H02463 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Grant-in-Aid for Encouragement of Scientists
Arts4Us - Working Together to Scale up Place-Based Arts Initiatives that Support the Mental Health of Children and Young People
Arts4Us - 共同努力扩大支持儿童和青少年心理健康的地方艺术举措
- 批准号:
AH/Z505493/1 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Research Grant
ARTS: A corevision of the pinhole borers (Coleoptera: Curculionidae: Platypodinae) and symbiotic fungi (Raffaelea spp.) via multi-generational systematics training
艺术:通过多代系统学训练对针孔蛀虫(鞘翅目:象甲科:扁豆亚科)和共生真菌(拉斐菌属)进行共同观察
- 批准号:
2342481 - 财政年份:2024
- 资助金额:
$ 31.92万 - 项目类别:
Continuing Grant