Biomedical Data Translator Technical Feasibility Assessment and Architecture Design
生物医学数据转换器技术可行性评估和架构设计
基本信息
- 批准号:9540181
- 负责人:
- 金额:$ 65.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-23 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureArtificial IntelligenceBiologicalBiological ModelsBiological ProcessCell SurvivalCell physiologyCellsClinical TrialsCommunitiesComplexComputerized Medical RecordCoupledCurrent Procedural Terminology CodesDNA Sequence AlterationDataData SetDiagnosisDiagnosticDiseaseFunctional disorderGene Expression ProfileGenerationsGeneticGoalsHumanHuman GeneticsIndividualKnowledgeLinkMethodologyModelingMolecularMutationNatureOrganPatientsPatternPharmaceutical PreparationsPhenotypePhosphorylationProbabilityProcessed GenesPropertyPublishingQuality ControlResearchResearch PersonnelResolutionResourcesSemanticsSourceSymptomsTerminologyTissuesTranslatingTranslation Processbasebiological systemschemical geneticsdata integrationdesigndrug candidateexperimental studygenetic associationhuman diseaseinsightinteroperabilitynovelphenotypic biomarkerpre-clinicalprotein functionresponsesmall moleculetreatment effect
项目摘要
A fundamental challenge to translate insights between biomedical researchers, who study
biological mechanisms, and clinicians, who diagnose patient symptoms, is that many links
between biological processes and disease pathophysiology are poorly understood. A
comprehensive Biomedical Translator must enable chains of inference across objects as
diverse as genetic mutations, molecular effects, tissue-specific expression patterns,
cellular processes, organ phenotypes, disease states, patient symptoms, and drug
responses, a challenge beyond the scope of any one organization.
Fortunately, many individual links in this chain have been made by experiments yielding
statistical connections between individual data types. High-throughput perturbation screens
link chemical and genetic perturbations to cellular phenotypes such as gene-expression
patterns, cell survival, or changes in phosphorylation. Genetic association studies link
mutations to human disease or intermediate phenotypes and biomarkers. Electronic medical
records (EMR) link diseases or human phenotypes to diagnostic or current procedural
terminology (CPT) codes, and clinical trials link the impact of drugs and drug candidates on
disease states.
In principle, incorporating these links into chains of inference could translate results between
the full set of data types within them. In practice, each link is maintained by experts with
domain-specific experiments, semantic terminology, and methodological standards. While a key
challenge faced by a global Biomedical Translator is to establish consistent standards across
these existing data types, a more important goal is to develop a principled and robust
framework to (a) model biological systems and experimental approaches to investigate them;
(b) organize knowledge about biological mechanism and disease; and (c) incorporate
diverse datasets that serve as windows into the underlying and unknown state of nature.
We propose to implement a Biomedical Translator as a probabilistic graphical model, a
paradigm from artificial intelligence (AI) research. Just as separate research communities form
weakly coupled parts of the translation process, graphical models allow global inferences from
weakly coupled “nodes”. These inferences require each node to publish only probability
distributions, enabling interoperability without necessarily having global entity-resolution
standards, and benefit from paradigms for quality control, fault tolerance, and relevance
assessment common in AI research. We hypothesize that a limited number of APIs,
implemented as probability computations by communities around the world, would yield a
Biomedical Translator as an emergent property of weakly coupled knowledge sources.
From basic properties of graphical models, such a Translator could probabilistically translate
among any data types connected within it, allowing for relatively complex query concepts. For
example: What cellular processes in which tissues are impacted in a patient-based EMR? What
genetic mutations sensitize cells to small-molecule treatment effects? Which small molecules
mimic genetic “experiments of nature” that protect against disease?
To illustrate the value of these resources and our architectural paradigm, we propose a
demonstration project to implement a Biomedical Translator supporting queries between
small molecules, biological processes, genes, and disease. The demonstration project will
provide a valuable first step to confront key data-integration and organizational challenges and
will enable previously impossible queries, such as identifying small molecules that perturb the
same biological processes implicated by human genetics in a disease context. In this capacity,
such Translator could realistically identify existing drugs for known symptoms (i.e., repurposing),
but could more broadly serve as an engine for hypothesis generation and
biological discovery, suggesting pre-clinical small molecules to develop based on their
observed biological activity, or providing heretofore novel links between cellular protein function
and disease pathophysiology.
在生物医学研究人员之间转化见解的基本挑战
生物学机制以及诊断患者症状的临床医生之间存在许多联系
生物过程和疾病病理生理学之间的关系知之甚少。一个
全面的生物医学翻译器必须启用跨对象的推理链
基因突变、分子效应、组织特异性表达模式等多种多样,
细胞过程、器官表型、疾病状态、患者症状和药物
响应,这是一项超出任何组织范围的挑战。
幸运的是,这个链条中的许多单独的环节都是通过实验产生的
各个数据类型之间的统计联系。高通量扰动屏幕
将化学和遗传扰动与细胞表型(例如基因表达)联系起来
模式、细胞存活或磷酸化的变化。遗传关联研究链接
人类疾病或中间表型和生物标志物的突变。电子医疗
记录 (EMR) 将疾病或人类表型与诊断或当前程序联系起来
术语(CPT)代码和临床试验将药物和候选药物的影响联系起来
疾病状态。
原则上,将这些链接纳入推理链可以将结果转化为
其中的完整数据类型集。在实践中,每个链接都由专家维护
特定领域的实验、语义术语和方法标准。虽然有钥匙
全球生物医学翻译人员面临的挑战是在各个领域建立一致的标准
对于这些现有的数据类型,更重要的目标是开发一个有原则的、健壮的
(a) 生物系统模型和研究它们的实验方法的框架;
(b) 整理有关生物机制和疾病的知识; (c) 合并
不同的数据集作为了解潜在的和未知的自然状态的窗口。
我们建议将生物医学翻译器实现为概率图形模型,
人工智能(AI)研究的范式。正如独立的研究团体的形成一样
翻译过程中的弱耦合部分,图形模型允许从全局推断
弱耦合“节点”。这些推论要求每个节点仅发布概率
发行版,无需全局实体解析即可实现互操作性
标准,并受益于质量控制、容错和相关性的范式
人工智能研究中常见的评估。我们假设 API 数量有限,
由世界各地的社区以概率计算的形式实现,将产生
生物医学翻译器作为弱耦合知识源的新兴属性。
从图模型的基本属性来看,这样的翻译器可以概率性地翻译
在其中连接的任何数据类型之间,允许相对复杂的查询概念。为了
例如:在基于患者的 EMR 中,组织的哪些细胞过程受到影响?什么
基因突变使细胞对小分子治疗效果敏感?哪些小分子
模仿遗传“自然实验”来预防疾病?
为了说明这些资源和我们的架构范例的价值,我们提出了一个
实施生物医学翻译器的示范项目,支持之间的查询
小分子、生物过程、基因和疾病。该示范项目将
为应对关键数据集成和组织挑战提供了宝贵的第一步,
将实现以前不可能的查询,例如识别干扰的小分子
疾病背景下人类遗传学所涉及的相同生物过程。以此身份,
这样的翻译器可以现实地识别现有药物的已知症状(即重新利用),
但可以更广泛地充当假设生成和
生物学发现,建议根据其特性开发临床前小分子
观察到的生物活性,或提供迄今为止细胞蛋白质功能之间的新联系
和疾病病理生理学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Application of MCAT questions as a testing tool and evaluation metric for knowledge graph-based reasoning systems.
- DOI:10.1111/cts.13021
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Fecho K;Balhoff J;Bizon C;Byrd WE;Hang S;Koslicki D;Rensi SE;Schmitt PL;Wawer MJ;Williams M;Ahalt SC
- 通讯作者:Ahalt SC
Knowledge Beacons: Web services for data harvesting of distributed biomedical knowledge.
- DOI:10.1371/journal.pone.0231916
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Hannestad LM;Dančík V;Godden M;Suen IW;Huellas-Bruskiewicz KC;Good BM;Mungall CJ;Bruskiewich RM
- 通讯作者:Bruskiewich RM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL ANDREW CLEMONS其他文献
PAUL ANDREW CLEMONS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL ANDREW CLEMONS', 18)}}的其他基金
Translating novel cancer targets and mechanisms from the CTD^2 Network using molecular glues
使用分子胶从 CTD^2 网络转化新的癌症靶点和机制
- 批准号:
10704124 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
Translating novel cancer targets and mechanisms from the CTD^2 Network using molecular glues
使用分子胶从 CTD^2 网络转化新的癌症靶点和机制
- 批准号:
10505307 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
A Translator Knowledge Provider for Systems Chemical Biology
系统化学生物学翻译知识提供者
- 批准号:
10332543 - 财政年份:2020
- 资助金额:
$ 65.11万 - 项目类别:
A Translator Knowledge Provider for Systems Chemical Biology
系统化学生物学翻译知识提供者
- 批准号:
10548044 - 财政年份:2020
- 资助金额:
$ 65.11万 - 项目类别:
Informing synthetic decision making using cheminformatic and bioinformatic profil
使用化学信息学和生物信息学分析为综合决策提供信息
- 批准号:
7696771 - 财政年份:2008
- 资助金额:
$ 65.11万 - 项目类别:
General data-analysis tools:cCemical Diversity (RMI)
通用数据分析工具:cChemical Diversity (RMI)
- 批准号:
7032046 - 财政年份:2005
- 资助金额:
$ 65.11万 - 项目类别:
General data-analysis tools to relate chemical diversity
关联化学多样性的通用数据分析工具
- 批准号:
7476648 - 财政年份:2005
- 资助金额:
$ 65.11万 - 项目类别:
General data-analysis tools to relate chemical diversity
关联化学多样性的通用数据分析工具
- 批准号:
7125582 - 财政年份:2005
- 资助金额:
$ 65.11万 - 项目类别:
Small-molecule fluorophores: screening for specific protein or RNA binding
小分子荧光团:筛选特定蛋白质或 RNA 结合
- 批准号:
6941848 - 财政年份:2004
- 资助金额:
$ 65.11万 - 项目类别:
Informing synthetic decision making using cheminformatic and bioinformatic profil
使用化学信息学和生物信息学分析为综合决策提供信息
- 批准号:
8331513 - 财政年份:
- 资助金额:
$ 65.11万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Fellowship














{{item.name}}会员




