Predictive Informatics Monitoring in the Neonatal Intensive Care Unit

新生儿重症监护病房的预测信息学监测

基本信息

  • 批准号:
    9095393
  • 负责人:
  • 金额:
    $ 45.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-10 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Premature infants in the Neonatal ICU require hospitalization until they reach physiological maturity, an average of 60 days. While in the hospital, though, they are at risk of sub-acute potentially catastrophic illnesses such as infectio, respiratory decompensation leading to urgent unplanned intubation, and intracranial bleeding. These illnesses are common and deadly. In each case, early diagnosis has the promise to improve outcome through early intervention. The long-term goal of our group is to develop such novel predictive monitoring strategies as early warning systems through advanced mathematical and statistical analysis of waveforms and other informatics data from the bedside monitor. This kind of approach recently led the group and its colleagues at 7 other centers to complete a NICHD- sponsored randomized clinical trial in 3000 premature infants, the largest ever conducted in this population. The result was very important - simply showing the results of a predictive monitor to clinicians reduced the death rate by more than 20%. The overall conceptual framework is that some sub-acute potentially catastrophic illnesses have subclinical prodromes with abnormal physiologic signatures. This is based on ideas about the systemic inflammatory response syndrome and the cholinergic anti-inflammatory pathway that link inflammation to abnormal signal transduction and autonomic nervous system activity. The result is that illness, even in early stages, leads to uncoupling of organs and abnormal control of heart and respiratory rhythms that can be detected using mathematical algorithms tailored to clinical insights. Achieving our goals of predictive informatics monitoring requires a large database of relevant clinical information and monitor data from the University of Virginia NICU, including vita signs and waveforms. The team of clinicians and mathematicians - a collaboration of University of Virginia and Columbia University - will discover phenotypes of abnormal physiology and develop algorithms to detect them. The large-scale computing capability for this work is in daily use, and the group will be poised to undertake randomized clinical trials to test the impact of the new monitoring. This represents a paradigm shift in patient care - monitors that report trends of development of health and illness rather than fleeting values.
描述(由申请人提供):新生儿ICU中的早产儿需要住院治疗,直到他们达到生理成熟,平均60天。然而,在住院期间,他们面临着亚急性潜在灾难性疾病的风险,如感染、呼吸失代偿导致紧急计划外插管和颅内出血。这些疾病是常见的和致命的。在每种情况下,早期诊断都有希望通过早期干预改善结果。我们小组的长期目标是通过对来自床边监护仪的波形和其他信息学数据进行先进的数学和统计分析,开发诸如早期预警系统之类的新型预测性监测策略。这种方法最近导致该小组及其在其他7个中心的同事完成了一项由NICHD赞助的3000名早产儿的随机临床试验,这是有史以来在这一人群中进行的最大规模的试验。结果非常重要--仅仅向临床医生展示预测监测的结果就可以将死亡率降低20%以上。总体概念框架是,一些亚急性潜在的灾难性疾病具有异常生理特征的亚临床表现。这是基于全身炎症反应综合征和胆碱能抗炎通路的想法,将炎症与异常信号转导和自主神经系统活动联系起来。其结果是,即使在早期阶段,疾病也会导致器官的分离以及心脏和呼吸节律的异常控制,这些都可以使用针对临床见解的数学算法来检测。实现我们的预测信息监测目标需要一个大型的相关临床信息数据库和来自弗吉尼亚大学NICU的监测数据,包括vita体征和波形。由临床医生和数学家组成的团队--由弗吉尼亚大学和哥伦比亚大学合作--将发现异常生理学的表型,并开发检测它们的算法。这项工作的大规模计算能力已在日常使用中,该小组将准备进行随机临床试验,以测试 新的监测。这代表了病人护理的范式转变-监测器报告健康和疾病的发展趋势,而不是短暂的价值观。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH RANDALL MOORMAN其他文献

JOSEPH RANDALL MOORMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH RANDALL MOORMAN', 18)}}的其他基金

HEART RATE VARIABILITY IN NEONATAL SEPSIS
新生儿败血症的心率变异性
  • 批准号:
    7366515
  • 财政年份:
    2006
  • 资助金额:
    $ 45.59万
  • 项目类别:
Impact of Neonatal Heart Rate Characteristics Monitoring
新生儿心率特征监测的影响
  • 批准号:
    7097473
  • 财政年份:
    2005
  • 资助金额:
    $ 45.59万
  • 项目类别:
Impact of Neonatal Heart Rate Characteristics Monitoring
新生儿心率特征监测的影响
  • 批准号:
    7261985
  • 财政年份:
    2005
  • 资助金额:
    $ 45.59万
  • 项目类别:
Impact of Neonatal Heart Rate Characteristics Monitoring
新生儿心率特征监测的影响
  • 批准号:
    7666829
  • 财政年份:
    2005
  • 资助金额:
    $ 45.59万
  • 项目类别:
Impact of Neonatal Heart Rate Characteristics Monitoring
新生儿心率特征监测的影响
  • 批准号:
    7423974
  • 财政年份:
    2005
  • 资助金额:
    $ 45.59万
  • 项目类别:
Impact of Neonatal Heart Rate Characteristics Monitoring
新生儿心率特征监测的影响
  • 批准号:
    6986465
  • 财政年份:
    2005
  • 资助金额:
    $ 45.59万
  • 项目类别:
HEART RATE VARIABILITY IN NEONATAL SEPSIS
新生儿败血症的心率变异性
  • 批准号:
    6979213
  • 财政年份:
    2003
  • 资助金额:
    $ 45.59万
  • 项目类别:
Heart Rate Characteristics Monitoring in Newborn Infant
新生儿心率特征监测
  • 批准号:
    7373497
  • 财政年份:
    2002
  • 资助金额:
    $ 45.59万
  • 项目类别:
Heart rate characteristics monitoring in newborn infants
新生儿心率特征监测
  • 批准号:
    6735652
  • 财政年份:
    2002
  • 资助金额:
    $ 45.59万
  • 项目类别:
Heart Rate Characteristics Monitoring in Newborn Infant
新生儿心率特征监测
  • 批准号:
    6872736
  • 财政年份:
    2002
  • 资助金额:
    $ 45.59万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 45.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了